Ji Xu | Big Data Analytics | Best Researcher Award

Prof. Ji Xu | Big Data Analytics | Best Researcher Award

Prof. Ji Xu, Guizhou University, China

Ji Xu (M’22) is an associate professor at the State Key Laboratory of Public Big Data, Guizhou University, China. He obtained his B.S. in Computer Science from Beijing Jiaotong University in 2004 and earned his Ph.D. in Computer Science from Southwest Jiaotong University in 2017. With expertise in data mining, granular computing, and machine learning, he has significantly contributed to the field through extensive research and publications. Dr. Xu has authored and co-authored over 30 papers in prestigious international journals, including IEEE TFS, IEEE TCYB, and Information Sciences. He also serves as a reviewer for top-tier journals like IEEE TNNLS, IEEE TFS, and Pattern Recognition. As an active member of IEEE, CCF, and CAAI, he remains at the forefront of technological advancements in artificial intelligence and big data analytics. His work continues to shape the future of intelligent computing and large-scale data processing.

Professional Profile

Google Scholar

Summary of Suitability for the Research for Best Researcher Award

Ji Xu is highly suitable for the “Research for Best Researcher Award” due to his impressive academic and professional achievements in the field of computer science, with a particular focus on data mining, granular computing, and machine learning. His educational background includes a Bachelor’s degree from Beijing Jiaotong University and a Ph.D. from Southwest Jiaotong University, which demonstrate his foundational expertise in these critical fields. As an associate professor at the State Key Laboratory of Public Big Data at Guizhou University, Xu has a clear commitment to advancing research in his area of specialization.

Xu’s research productivity further demonstrates his suitability for the award. He has authored over 30 peer-reviewed papers in prestigious international journals such as IEEE TFS, IEEE TCYB, IEEE JIoT, Information Sciences, and others. His contributions to these journals reflect his high-level expertise and ability to make significant advancements in his field. Furthermore, Xu has co-authored a book, showcasing his ability to synthesize and communicate complex ideas to a broader audience.

🎓 Education 

Ji Xu’s academic journey began at Beijing Jiaotong University, where he obtained his Bachelor of Science (B.S.) in Computer Science in 2004. He later pursued advanced studies at Southwest Jiaotong University, earning his Doctor of Philosophy (Ph.D.) in Computer Science in 2017. His doctoral research focused on artificial intelligence, data mining, and computational intelligence, laying a strong foundation for his contributions to big data analytics. Throughout his academic career, he demonstrated exceptional analytical skills and a deep understanding of machine learning techniques. His education provided him with the technical expertise required to explore complex datasets and develop intelligent computing models. Additionally, his training at two leading Chinese universities equipped him with interdisciplinary knowledge in software engineering, algorithms, and large-scale data processing. His academic background remains a cornerstone of his professional research, guiding his work in advanced computational methods and innovative AI applications.

💼 Professional Experience

Dr. Ji Xu is currently an associate professor at the State Key Laboratory of Public Big Data, Guizhou University. In this role, he leads research in big data analytics, machine learning, and granular computing. His professional experience spans academia and research, with a focus on developing intelligent algorithms for large-scale data processing. Over the years, he has collaborated with industry and academia on high-impact projects related to artificial intelligence and computational intelligence. As an active member of IEEE, CCF, and CAAI, he contributes to the global research community through technical publications, conference presentations, and journal reviews. In addition to his research, he mentors graduate students, guiding them in innovative AI and data science projects. His expertise in handling complex data-driven challenges has established him as a prominent researcher in the field. Dr. Xu’s work continues to influence advancements in big data and artificial intelligence applications.

🏅 Awards and Recognition

Dr. Ji Xu has received multiple accolades for his contributions to computer science, particularly in big data analytics, machine learning, and granular computing. He has been recognized for his research excellence through numerous best paper awards at international conferences. His extensive publication record in prestigious journals such as IEEE TFS, IEEE TCYB, and Neurocomputing has earned him a reputation as a leading researcher in artificial intelligence. Additionally, he serves as a reviewer for top-tier journals, including IEEE TNNLS, IEEE TFS, and Pattern Recognition, demonstrating his influence in shaping the field. As a distinguished member of IEEE, CCF, and CAAI, he actively participates in research communities and contributes to major advancements in computational intelligence. His innovative work in data science and AI continues to garner international recognition, positioning him among the top researchers driving the future of intelligent data processing and analytics.

🌍 Research Skills On Big Data Analytics

Dr. Ji Xu’s research expertise encompasses data mining, granular computing, and machine learning. His ability to analyze large-scale datasets and develop intelligent algorithms has led to groundbreaking contributions in big data analytics. He specializes in computational intelligence, predictive modeling, and pattern recognition, applying advanced AI techniques to solve complex real-world problems. His skills extend to deep learning, natural language processing (NLP), and algorithm optimization, enabling him to create efficient data-driven solutions. With a strong foundation in mathematical modeling and statistical analysis, he excels in deriving meaningful insights from high-dimensional data. His role as a reviewer for IEEE TFS, IEEE TNNLS, and Pattern Recognition reflects his deep understanding of AI methodologies. Additionally, he collaborates on interdisciplinary projects, integrating AI with emerging technologies such as IoT and edge computing. His research continues to push the boundaries of artificial intelligence, transforming data analytics and intelligent systems.

📖 Publication Top Notes

  • DenPEHC: Density peak based efficient hierarchical clustering
    Authors: J Xu, G Wang, W Deng
    Journal: Information Sciences, 373, 200-218
    Citations: 142
    Year: 2016

  • A survey of smart water quality monitoring system
    Authors: J Dong, G Wang, H Yan, J Xu, X Zhang
    Journal: Environmental Science and Pollution Research, 22(7), 4893-4906
    Citations: 139
    Year: 2015

  • Granular computing: from granularity optimization to multi-granularity joint problem solving
    Authors: G Wang, J Yang, J Xu
    Journal: Granular Computing, 2(3), 105-120
    Citations: 138
    Year: 2017

  • Self-training semi-supervised classification based on density peaks of data
    Authors: D Wu, M Shang, X Luo, J Xu, H Yan, W Deng, G Wang
    Journal: Neurocomputing, 275, 180-191
    Citations: 130
    Year: 2018

  • Review of big data processing based on granular computing
    Authors: J Xu, GY Wang, H Yu
    Journal: Chinese Journal of Computers, 38(8), 1497-1517
    Citations: 59
    Year: 2015

  • 基于粒计算的大数据处理 (Big Data Processing Based on Granular Computing)
    Authors: 徐计 (J Xu), 王国胤 (G Wang), 于洪 (H Yu)
    Journal: 计算机学报 (Chinese Journal of Computers), 38(8), 1497-1517
    Citations: 50
    Year: 2015

  • Fat node leading tree for data stream clustering with density peaks
    Authors: J Xu, G Wang, T Li, W Deng, G Gou
    Journal: Knowledge-Based Systems, 120, 99-117
    Citations: 44
    Year: 2017

  • Piecewise two-dimensional normal cloud representation for time-series data mining
    Authors: W Deng, G Wang, J Xu
    Journal: Information Sciences, 374, 32-50
    Citations: 40
    Year: 2016

  • A multi-granularity combined prediction model based on fuzzy trend forecasting and particle swarm techniques
    Authors: W Deng, G Wang, X Zhang, J Xu, G Li
    Journal: Neurocomputing, 173, 1671-1682
    Citations: 37
    Year: 2016

  • Local-Density-Based Optimal Granulation and Manifold Information Granule Description
    Authors: J Xu, G Wang, T Li, W Pedrycz
    Journal: IEEE Transactions on Cybernetics
    Citations: 28
    Year: 2017

Syed Mohammod Minhaz Hossain | Computer Science | Best Researcher Award

Assoc. Prof. Dr. Syed Mohammod Minhaz Hossain | Computer Science | Best Researcher Award

👤 Assoc. Prof. Dr. Syed Mohammod Minhaz Hossain, Premier University, Bangladesh

Syed Mohammod Minhaz Hossain is a passionate researcher and IT professional dedicated to advancing the field of Computer Science and Engineering. He is currently pursuing a Ph.D. in Computer Science & Engineering at Chittagong University of Engineering & Technology (CUET). With a strong academic background, he earned his M.Sc. and B.Sc. in Computer Science & Engineering from CUET, securing notable positions. Hossain is committed to skillful learning and aims to create a synergy between industry and academia. He has published numerous research papers and contributed significantly to the scientific community, particularly in the areas of AI, machine learning, and environmental studies. Apart from his academic journey, he is a fervent advocate of education, believing in the power of teaching to shape well-rounded professionals who can contribute to society’s progress.

Professional Profile

Scopus

Orcid

Google Scholar

 🌟  Suitability of Syed Mohammod Minhaz Hossain for the Research for Best Researcher Award:

Syed Mohammod Minhaz Hossain demonstrates strong academic and professional qualifications, making him a highly suitable candidate for the Research for Best Researcher Award. His dedication to academic excellence and research is reflected in his substantial academic achievements, including a Ph.D. in Computer Science and Engineering from Chittagong University of Engineering & Technology (CUET), and his outstanding undergraduate and postgraduate performance. His consistent recognition, such as the UGC Ph.D. Fellowship and multiple scholarships, underscores his commitment to research and academic growth.

Hossain has made notable contributions to the research community, particularly in the fields of artificial intelligence, machine learning, and environmental science. His extensive publication record includes numerous articles in high-impact journals such as PLoS ONE, Chemosphere, and Annals of Data Science, with a variety of topics ranging from water quality assessments to disease classification and COVID-19 detection using deep learning. His research not only focuses on technological advancements but also addresses pressing societal challenges, such as public health, environmental sustainability, and cybersecurity.

🎓  Education

Syed Mohammod Minhaz Hossain’s academic journey is marked by consistent excellence. He is currently pursuing his Ph.D. in Computer Science & Engineering at Chittagong University of Engineering & Technology (CUET). Prior to that, he completed his M.Sc. in Computer Science & Engineering at CUET in 2022, where he earned a CGPA of 3.42. He also holds a B.Sc. in the same field from CUET, securing a remarkable CGPA of 3.56. His foundation in education started at Chittagong Collegiate School, where he excelled with a GPA of 4.63 in his SSC and later earned a GPA of 4.50 in his HSC at Chittagong College. Throughout his academic career, Hossain has received multiple scholarships, including the UGC PhD Fellowship (2021-2022) and various merit-based awards, underlining his dedication and outstanding performance in the field of Computer Science.

💼 Professional Experience

Syed Mohammod Minhaz Hossain’s professional experience blends academia and industry, underscoring his passion for teaching and research. As a faculty member at Premier University, Bangladesh, Hossain conducts web system and program applications courses, integrating real-world industry skills into the classroom. His expertise is further demonstrated through his role in various research projects, focusing on areas such as artificial intelligence, deep learning, and environmental science. Hossain’s experience includes collaborating with international researchers, contributing to high-impact journals and conferences. His role in designing and developing academic curricula reflects his commitment to fostering future IT professionals who are not only skilled but also socially responsible. Additionally, Hossain’s involvement in the University of Technology, Sydney (UTS) College’s academic programs highlights his global outlook and the application of advanced research in practical teaching settings.

🏅 Awards and Recognitions 

Syed Mohammod Minhaz Hossain’s journey is characterized by numerous academic and research accolades. He received the prestigious UGC PhD Fellowship for 2021-2022, showcasing his commitment to advancing knowledge in Computer Science. Hossain earned the fourth position in his B.Sc. at CUET and was a recipient of the Board Scholarship in his HSC in 2003. He was also honored with the Junior Merit Scholarship in 1998 and the Primary Merit Scholarship in 1995, underlining his consistent academic excellence from an early age. His research contributions have been widely recognized, with multiple publications in high-impact journals such as PLoS ONE, Annals of Data Science, and Chemosphere. Furthermore, Hossain’s work on machine learning models for health-related issues and his involvement in international book chapters reflect his growing influence in the global research community.

🌍 Research Skills On Computer Science

Syed Mohammod Minhaz Hossain possesses a broad range of research skills that span artificial intelligence, machine learning, deep learning, and data science. His expertise includes applying these advanced technologies to solve complex problems in areas like health diagnostics, environmental monitoring, and cybersecurity. Hossain has developed proficiency in using deep neural networks, self-attention mechanisms, and convolutional models, as seen in his research on plant leaf disease recognition and heart disease prediction. Additionally, he has contributed to studies focused on the detection of COVID-19 fake news, Parkinson’s disease classification, and coastal water quality assessment. His research methodology includes leveraging large datasets, conducting statistical analyses, and employing advanced algorithms to create efficient and scalable solutions. Hossain’s ability to integrate interdisciplinary knowledge into his projects further enhances his capability to make impactful contributions to both academic and practical fields.

📖 Publication Top Notes

  • Cyber Intrusion Detection Using Machine Learning Classification Techniques
    • Authors: H Alqahtani, IH Sarker, A Kalim, SMM Hossain, S Ikhlaq, S Hossain
    • Citations: 189
    • Year: 2020
  • A Data-Driven Heart Disease Prediction Model Through K-Means Clustering-Based Anomaly Detection
    • Authors: RC Ripan, IH Sarker, SMM Hossain, MM Anwar, R Nowrozy, MM Hoque
    • Citations: 66
    • Year: 2021
  • Rice Leaf Diseases Recognition Using Convolutional Neural Networks
    • Authors: SMM Hossain, MMM Tanjil, MAB Ali, MZ Islam, MS Islam, S Mobassirin
    • Citations: 49
    • Year: 2021
  • Plant Leaf Disease Recognition Using Depth-Wise Separable Convolution-Based Models
    • Authors: SMM Hossain, K Deb, PK Dhar, T Koshiba
    • Citations: 34
    • Year: 2021
  • Amassing the Covid-19 Driven PPE Wastes in the Dwelling Environment of Chittagong Metropolis and Associated Implications
    • Authors: MJ Abedin, MU Khandaker, MR Uddin, MR Karim, MSU Ahamad
    • Citations: 22
    • Year: 2022
  • Assessment of Coastal River Water Quality in Bangladesh: Implications for Drinking and Irrigation Purposes
    • Authors: MR Uddin, MU Khandaker, S Ahmed, MJ Abedin, SMM Hossain
    • Citations: 13
    • Year: 2024
  • Spam Filtering of Mobile SMS Using CNN–LSTM Based Deep Learning Model
    • Authors: SMM Hossain, JA Sumon, A Sen, MI Alam, KMA Kamal, H Alqahtani
    • Citations: 13
    • Year: 2021
  • Plant Leaf Disease Recognition Using Histogram-Based Gradient Boosting Classifier
    • Authors: SMM Hossain, K Deb
    • Citations: 13
    • Year: 2021
  • Content-Based Spam Email Detection Using an N-gram Machine Learning Approach
    • Authors: NJ Euna, SMM Hossain, MM Anwar, IH Sarker
    • Citations: 9
    • Year: 2023
  • Trash Image Classification Using Transfer Learning-Based Deep Neural Network
    • Authors: D Das, A Sen, SMM Hossain, K Deb
    • Citations: 9
    • Year: 2022