Youngkwon Kim | Materials Science | Best Researcher Award

Dr. Youngkwon Kim | Materials Science | Best Researcher Award

Dr. Youngkwon Kim, Korea Research Institute of Chemical Technology, South Korea

Dr. Youngkwon Kim is a distinguished Senior Researcher at the Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), located in Daejeon, South Korea. His research focuses on developing cutting-edge materials for advanced photolithography, photoresist technology, and atomic layer deposition (ALD). With extensive experience in polymer and inorganic photoresists, Dr. Kim has made significant contributions to the semiconductor industry, particularly in developing low-dose EUV photoresists and inorganic PRs. His expertise is demonstrated through numerous high-impact publications, solidifying his reputation as an innovative researcher in materials science.

Professional Profile

Oricd

Google Scholar

Summary of Suitability for the Best Researcher Awards

Dr. Youngkwon Kim is highly suitable for the “Research for Best Researcher Award” due to his exceptional contributions to materials science, particularly in the field of photoresists, organic solar cells, and self-assembled polymers. As a senior researcher at the Korea Research Institute of Chemical Technology (KRICT), his work in developing advanced photoresists and contributing to the growth of thin film materials has been instrumental in shaping the future of semiconductor and solar technologies. His expertise in Atomic Layer Deposition (ALD) and self-assembled monolayers (SAM) positions him as a leader in his field, especially with the focus on next-generation materials.

Dr. Kim’s work in industry, particularly with Samsung Electronics, further highlights his suitability. Leading significant projects such as the development of low-dose EUV photoresists and the world’s first inorganic EUV PR application for memory devices demonstrates his capacity to translate cutting-edge research into practical, impactful technologies. His leadership in material development for semiconductor manufacturing reflects not only deep scientific knowledge but also a high level of innovation and impact on global industry standards.

🎓 Education

  • Ph.D. in Chemical & Biomolecular Engineering (2016 – 2020)
    Korea Advanced Institute of Science and Technology (KAIST)
    Advisor: Prof. Bumjoon J. Kim
    Thesis: Self-Assembly Behaviors of Polythiophene-based Homopolymers and Block Copolymers by Tuning Regioregularity and Molecular Weight.
  • M.S. in Chemical & Biomolecular Engineering (2014 – 2016)
    Korea Advanced Institute of Science and Technology (KAIST)
    Advisor: Prof. Bumjoon J. Kim
    Thesis: Solution assembly behaviors of poly(3-hexylthiophene)-graft-poly(2-vinylpyridine) rod-coil copolymer.
  • B.S. in Chemical & Biomolecular Engineering (2010 – 2014)
    Korea Advanced Institute of Science and Technology (KAIST)

💼 Professional Experience

  • Senior Researcher (April 2023 – Present)
    Thin Film Materials Research Center, KRICT
  • Researching polymer & inorganic photoresists, atomic layer deposition, and self-assembled monolayers.
  • Senior Research Engineer (Sep. 2021 – Mar. 2023)
    DRAM Process Architecture Team, Samsung Electronics Co.
  • Led material development for D1b (12.8nm) and EUV PR projects for high EUV-absorption and profile-uniformity.
  • Developed world’s first inorganic PR application for memory devices.
  • Senior Research Engineer (Mar. 2020 – Aug. 2021)
    Material Development Group, Samsung Electronics Co.
  • Developed DUV photoresists and photo-sensitive polyimides (PSPI).
  • Visiting Student (May 2018 – Nov. 2018)
    Material Research Laboratory, University of California, Santa Barbara.
  • Worked on polymer synthesis and electron transfer chain reactions.

🏅 Awards and Recognition

  • Significant contributor to developing world’s first inorganic PR for memory devices.
  • Published multiple high-impact research articles in prestigious journals.
  • Led numerous successful projects on photoresists, ALD, and polymers at KRICT and Samsung Electronics.
  • Recognized for innovative research techniques in semiconductor materials development.
  • Collaborative work with international research groups and universities.

🌍 Research Skills On Materials Science

  • Advanced materials development for semiconductor manufacturing.
  • Expertise in polymer and inorganic photoresists, particularly in EUV and DUV lithography.
  • Strong background in atomic layer deposition (ALD) and self-assembled monolayers (SAM).
  • Experience in polymer synthesis, structural control, and solution assembly.
  • Collaborative research with global research groups for high-impact studies.

  📖 Publication Top Notes

  • Title: Architectural engineering of rod–coil compatibilizers for producing mechanically and thermally stable polymer solar cells
    Authors: HJ Kim, JH Kim, JH Ryu, Y Kim, H Kang, WB Lee, TS Kim, BJ Kim
    Journal: ACS Nano
    Citation Count: 103
    Year: 2014

  • Title: Controlling energy levels and blend morphology for all-polymer solar cells via fluorination of a naphthalene diimide-based copolymer acceptor
    Authors: MA Uddin, Y Kim, R Younts, W Lee, B Gautam, J Choi, C Wang, …
    Journal: Macromolecules
    Citation Count: 73
    Year: 2016

  • Title: Efficient and Air‐Stable Aqueous‐Processed Organic Solar Cells and Transistors: Impact of Water Addition on Processability and Thin‐Film Morphologies of Electroactive Materials
    Authors: C Lee, HR Lee, J Choi, Y Kim, TL Nguyen, W Lee, B Gautam, X Liu, …
    Journal: Advanced Energy Materials
    Citation Count: 61
    Year: 2018

  • Title: Regioregular-block-Regiorandom Poly(3-hexylthiophene) Copolymers for Mechanically Robust and High-Performance Thin-Film Transistors
    Authors: H Park, BS Ma, JS Kim, Y Kim, HJ Kim, D Kim, H Yun, J Han, FS Kim, …
    Journal: Macromolecules
    Citation Count: 52
    Year: 2019

  • Title: High‐Performance, Flexible NO2 Chemiresistors Achieved by Design of Imine‐Incorporated n‐Type Conjugated Polymers
    Authors: H Park, DH Kim, BS Ma, E Shin, Y Kim, TS Kim, FS Kim, ID Kim, BJ Kim
    Journal: Advanced Science
    Citation Count: 44
    Year: 2022

  • Title: Mechanistic study on the shape transition of block copolymer particles driven by length-controlled nanorod surfactants
    Authors: KH Ku, JH Ryu, J Kim, H Yun, C Nam, JM Shin, Y Kim, SG Jang, WB Lee, …
    Journal: Chemistry of Materials
    Citation Count: 43
    Year: 2018

  • Title: Regioregularity-control of conjugated polymers: from synthesis and properties, to photovoltaic device applications
    Authors: Y Kim, H Park, JS Park, JW Lee, FS Kim, HJ Kim, BJ Kim
    Journal: Journal of Materials Chemistry A
    Citation Count: 41
    Year: 2022

  • Title: Chain-length-dependent self-assembly behaviors of discrete conjugated oligo (3-hexylthiophene)
    Authors: Y Kim, H Park, A Abdilla, H Yun, J Han, GE Stein, CJ Hawker, BJ Kim
    Journal: Chemistry of Materials
    Citation Count: 37
    Year: 2020

  • Title: Disintegrable n‐type Electroactive Terpolymers for high‐performance, transient organic electronics
    Authors: H Park, Y Kim, D Kim, S Lee, FS Kim, BJ Kim
    Journal: Advanced Functional Materials
    Citation Count: 35
    Year: 2022

  • Title: Aqueous soluble fullerene acceptors for efficient eco-friendly polymer solar cells processed from benign ethanol/water mixtures
    Authors: Y Kim, J Choi, C Lee, Y Kim, C Kim, TL Nguyen, B Gautam, K Gundogdu, …
    Journal: Chemistry of Materials
    Citation Count: 35
    Year: 2018

Je-ho Shim | Materials Science | Best Researcher Award

Assist. Prof. Dr. Je-ho Shim | Materials Science | Best Researcher Award

Assist. Prof. Dr. Je-ho Shim, Department of physics, South Korea

Shim Je-Ho, born on April 5, 1982, is an Assistant Professor in the Department of Physics at Yanbian University, China. With a strong background in condensed matter physics, he has made significant contributions in ultrafast magnetization dynamics and magnetic vortex observation. Dr. Shim earned his Ph.D. from Chungbuk National University, South Korea, under the guidance of Dong-Hyun Kim. He has previously worked as a researcher at the Max Planck Center for Attosecond Science at Pohang University of Science and Technology in Korea. His research is renowned for its focus on micromagnetic simulations, femtosecond time-resolved magneto-optic Kerr effects, and ferromagnetic resonance studies. His scientific endeavors have earned him national recognition, including a commendation from the Korean Ministry of Science and Information and Communications Technology. Dr. Shim has a proven track record of advancing knowledge in materials science and physics, with numerous impactful publications and projects.

Professional Profile

Scopus

Orcid

Google Scholar

Research for Best Researcher Award: Shim Je-Ho’s Suitability

Shim Je-Ho’s extensive background in condensed matter physics, with a particular focus on ultrafast magnetization dynamics, makes him an excellent candidate for the Research for Best Researcher Award. He completed his Ph.D. in Condensed Matter Physics at Chungbuk National University, South Korea, under the guidance of Professor Dong-Hyun Kim, which laid a solid foundation for his expertise. His academic experience, combined with his work as a researcher at the Max Planck Center for Attosecond Science and his current role as an Assistant Professor at Yanbian University, illustrates his capacity to drive forward significant advances in the field of magnetic phenomena, specifically regarding ferromagnetic materials.

One of his most notable contributions is his groundbreaking work on magnetic vortex observation using X-ray microscopy, as well as his exploration of ultrafast magnetization dynamics through femtosecond time-resolved magneto-optic Kerr effect and micromagnetic simulations. These areas represent cutting-edge research in condensed matter physics, with implications for data storage and quantum computing technologies. His research has led to numerous publications in high-impact journals such as Nature Communications, Science Reports, and Physical Review B, further establishing his reputation as a leader in the field. Notably, his 2017 work on the “Ultrafast Giant Magnetic Cooling Effect in Ferromagnetic Co/Pt Multilayers” and his contributions to understanding ultrafast spin dynamics have expanded our understanding of magnetism at the nanoscale.

🎓 Education

Dr. Shim Je-Ho completed his Ph.D. in Condensed Matter Physics at Chungbuk National University, Korea, in September 2015, after obtaining a Master’s degree in the same field from the same institution in 2010. Under the mentorship of Dong-Hyun Kim, his graduate work focused on magnetic dynamics and micromagnetic simulations. He also earned his bachelor’s degree in physics from Chungbuk National University in 2008. His education laid the foundation for his in-depth understanding of ultrafast magnetization dynamics, magnetic vortex systems, and related phenomena. Dr. Shim’s academic journey not only equipped him with technical expertise in physics but also sparked his long-term interest in ferromagnetic resonance, X-ray microscopy, and ultrafast dynamics. His education at Chungbuk National University remains an integral part of his scientific career and continues to shape his innovative research directions.

💼 Professional Experience 

Dr. Shim Je-Ho has an extensive academic and research career spanning various roles in South Korea and China. After completing his Ph.D. in 2015, he served as a researcher at the Max Planck Center for Attosecond Science at Pohang University of Science and Technology, Korea, from 2015 to 2022. In this role, he advanced ultrafast magnetization dynamics research, including studies on femtosecond time-resolved magneto-optic Kerr effects and micromagnetic simulations. In 2022, he took on his current role as an Assistant Professor in the Department of Physics at Yanbian University in China, where he continues to expand his research on ultrafast magnetization dynamics, magnetic vortex observation, and ferromagnetic materials. Dr. Shim’s experience spans both theoretical and experimental work in condensed matter physics, making him a highly regarded expert in his field. His contributions have solidified his reputation in the global physics and materials science communities.

🏅 Awards and Recognition 

Dr. Shim Je-Ho has received notable recognition for his contributions to the field of materials science. In April 2019, he was awarded the Minister of Science, Technology, and Information and Communications Technology Commendation during the Korea Science Day, a prestigious accolade for his groundbreaking work in natural sciences. His research on ultrafast magnetization dynamics and magnetic vortex systems has garnered attention and respect within the scientific community. The recognition of his work by the Korean Ministry of Science highlights his contributions to advancing the understanding of magnetic properties at ultrafast timescales. Additionally, Dr. Shim has been invited to present his research at leading conferences, further establishing his position as an influential figure in condensed matter physics. His award-winning research continues to shape developments in ultrafast dynamics, ferromagnetic materials, and magneto-optic technologies.

🌍 Research Skill On Materials Science

Dr. Shim Je-Ho’s research focuses on ultrafast magnetization dynamics and magnetic vortex systems, particularly their behavior at femtosecond timescales. He is proficient in utilizing advanced tools such as femtosecond time-resolved magneto-optic Kerr effects, X-ray microscopy, and micromagnetic simulations to study ferromagnetic materials and multilayers. His work on the ultrafast manipulation of exchange stiffness and the role of non-thermal electrons in spin dynamics has led to significant insights in materials science. Additionally, his research on ferromagnetic resonance (FMR) and optical-pump THz-probe studies highlights his expertise in characterizing ferromagnetic films. Dr. Shim also brings a broad range of experience in simulating various ferromagnetic patterns, contributing to both theoretical and experimental advancements in the field. His ability to combine computational methods with experimental techniques enables him to explore novel phenomena in materials science and condensed matter physics.

📖 Publication Top Notes

  • Size-dependent shifts of the Néel temperature and optical band-gap in NiO nanoparticles
    Authors: S. Thota, J.H. Shim, M.S. Seehra
    Journal of Applied Physics 114 (21), 99
    Year: 2013
  • Antiferromagnetic layer thickness dependence of noncollinear uniaxial and unidirectional anisotropies in NiFe/FeMn/CoFe trilayers
    Authors: H.C. Choi, C.Y. You, K.Y. Kim, J.S. Lee, J.H. Shim, D.H. Kim
    Physical Review B—Condensed Matter and Materials Physics 81 (22), 224410
    Year: 2010
  • Intrinsic pinning behavior and propagation onset of three-dimensional Bloch-point domain wall in a cylindrical ferromagnetic nanowire
    Authors: H.G. Piao, J.H. Shim, D. Djuhana, D.H. Kim
    Applied Physics Letters 102 (11)
    Year: 2013
  • Induced versus intrinsic magnetic moments in ultrafast magnetization dynamics
    Authors: M. Hofherr, S. Moretti, J. Shim, S. Häuser, N.Y. Safonova, M. Stiehl, A. Ali, …
    Physical Review B 98 (17), 174419
    Year: 2018
  • Direct observation of terahertz emission from ultrafast spin dynamics in thick ferromagnetic films
    Authors: L. Huang, J.W. Kim, S.H. Lee, S.D. Kim, V.M. Tien, K.P. Shinde, J.H. Shim, Y. Shin, …
    Applied Physics Letters 115 (14)
    Year: 2019
  • Nonlinear motion of coupled magnetic vortices in ferromagnetic/nonmagnetic/ferromagnetic trilayer
    Authors: S.H. Jun, J.H. Shim, S.K. Oh, S.C. Yu, D.H. Kim, B. Mesler, P. Fischer
    Applied Physics Letters 95 (14)
    Year: 2009
  • Domain wall propagation in wavy ferromagnetic nanowire
    Authors: H.G. Piao, J.H. Shim, S.H. Lee, D. Djuhana, S.K. Oh, S.C. Yu, D.H. Kim
    IEEE Transactions on Magnetics 45 (10), 3926-3929
    Year: 2009
  • Ultrafast dynamics of exchange stiffness in Co/Pt multilayer
    Authors: J.H. Shim, A.A. Syed, Y. Shin, J.W. Kim, H.G. Piao, S.H. Lee, K.M. Lee, J.R. Jeong, …
    Communications Physics 3 (1), 74
    Year: 2020
  • Ratchet effect of the domain wall by asymmetric magnetostatic potentials
    Authors: H.G. Piao, H.C. Choi, J.H. Shim, D.H. Kim, C.Y. You
    Applied Physics Letters 99 (19)
    Year: 2011
  • Universal field-tunable terahertz emission by ultrafast photoinduced demagnetization in Fe, Ni, and Co ferromagnetic films
    Authors: L. Huang, S.H. Lee, S.D. Kim, J.H. Shim, H.J. Shin, S. Kim, J. Park, S.Y. Park, …
    Scientific Reports 10 (1), 15843
    Year: 2020

Samir Kamel | Materials Science | Best Researcher Award

Prof. Samir Kamel | Materials Science | Best Researcher Award

👤 Prof. Samir Kamel, National Research Center, Egypt

Prof. Samir Kamel Mohamed Elzayati, Ph.D., is an eminent scientist specializing in cellulose chemistry and materials science. As the Head of the Cellulose and Paper Department at the National Research Centre (NRC) in Egypt, he has significantly contributed to research in smart materials, nanocomposites, and sustainable biomaterials. Prof. Elzayati has served as the Vice President of the Chemical Industries Research Division and has over three decades of academic and research excellence. His global collaborations span leading institutions in France, China, and the USA, enriching his work on advanced materials and green technologies. A prolific scholar, Prof. Elzayati has consistently ranked among the top 2% of scientists globally by Stanford University. His commitment to education, scientific innovation, and international collaboration positions him as a leader in materials science and cellulose technology.

Professional Profile

Orcid

Google Scholar

 🌟 Assessment of Suitability for the “Research for Best Researcher Award”

Summary of Suitability
Prof. Samir Kamel Mohamed Elzayati demonstrates an exceptional record of academic and professional achievements that position him as a strong contender for the “Research for Best Researcher Award.” His expertise in cellulose chemistry, biomaterials, and nanocomposites aligns closely with the award’s emphasis on impactful and innovative research. Prof. Elzayati’s prolific contributions include high-impact publications, international collaborations, and supervision of advanced research, which highlight his leadership in his field.

His inclusion on Stanford University’s global list of the top 2% of scientists for four consecutive years underscores his global recognition and scholarly influence. Prof. Elzayati’s leadership roles, such as his tenure as the Head of the Cellulose and Paper Department and Vice President of the Chemical Industries Research Division, further reflect his commitment to advancing scientific research and mentoring future generations.

🎓 Education 

Prof. Elzayati’s academic journey reflects his dedication to chemistry and materials science. He earned his B.Sc. in Chemistry in 1989 from Ain Shams University, Egypt, followed by an M.Sc. in Chemistry in 1994. His doctoral degree, awarded in 1996, focused on advanced chemical processes, laying the foundation for his specialization in cellulose and biomaterials. Prof. Elzayati’s educational background equipped him with expertise in macromolecular chemistry, enabling breakthroughs in smart materials and hydrogels. His passion for education and mentorship has led to supervising M.Sc. and Ph.D. students across Egypt and internationally, fostering the next generation of scientists. Through academic rigor and interdisciplinary collaboration, Prof. Elzayati continues to advance innovations in sustainable and advanced materials.

💼  Professional Experience 

Prof. Elzayati has a distinguished career spanning over 30 years. He currently serves as the Head of the Cellulose and Paper Department at NRC, where he leads cutting-edge research in cellulose chemistry and nanocomposites. Previously, he held the position of Vice President of the Chemical Industries Research Division, overseeing significant advancements in applied chemical research. His international teaching roles include positions at Sabha University and Omar El-Mukhtar University in Libya, as well as the University of Malakand, Pakistan. His global engagements extend to scientific missions in France, China, and the USA, fostering collaborations that drive innovation in sustainable materials. Prof. Elzayati’s dedication to academia, combined with his leadership in applied sciences, has cemented his reputation as a trailblazer in cellulose technology and materials science.

🏅 Awards and Recognition 

Prof. Elzayati’s contributions to materials science have earned him numerous accolades. Among these are the prestigious Al-Shorouk Academy Award for Scientific and Technological Creativity (2023) and the Award for Scientific Excellence in Basic Sciences from NRC (2013). Recognized globally, he has consistently featured on Stanford University’s list of the top 2% of scientists since 2019. His pioneering work in cellulose chemistry earned him the Prof. Fardus Mubark Award for Smart Materials and the Prof. Yehia Fahmy Award for excellence in cellulose, paper, and wood research. These honors highlight his dedication to advancing sustainable materials and his profound impact on scientific innovation.

🌍 Research Skills On Material Science

Prof. Elzayati’s research skills encompass diverse areas in materials science, including cellulose chemistry, biomaterials, nanocomposites, and hydrogels. His expertise extends to developing smart materials with applications in sustainable technologies and sensors. He excels in synthesizing macromolecular structures and engineering advanced materials for renewable and environmentally friendly applications. With proficiency in multidisciplinary methodologies, Prof. Elzayati integrates chemical analysis, polymer science, and material engineering to create innovative solutions. His global collaborations and extensive publication record reflect his ability to translate complex scientific concepts into impactful research, addressing challenges in green chemistry and sustainable development.

📖 Publication Top Notes

  • Pharmaceutical significance of cellulose: A review
    Authors: S. Kamel, N. Ali, K. Jahangir, S.M. Shah, A.A. El-Gendy
    Citations: 551
    Year: 2008
  • Nanotechnology and its applications in lignocellulosic composites, a mini review
    Authors: S. Kamel
    Citations: 329
    Year: 2007
  • Mechanical and antibacterial properties of novel high-performance chitosan/nanocomposite films
    Authors: A.M. Youssef, H. Abou-Yousef, S.M. El-Sayed, S. Kamel
    Citations: 197
    Year: 2015
  • Thermal behaviour and infrared spectroscopy of cellulose carbamates
    Authors: A.A.M.A. Nada, S. Kamel, M. El-Sakhawy
    Citations: 172
    Year: 2000
  • Evaluation of corn husk fibers reinforced recycled low-density polyethylene composites
    Authors: A.M. Youssef, A. El-Gendy, S. Kamel
    Citations: 150
    Year: 2015
  • Infra-red spectroscopic study of lignins
    Authors: A.A.M.A. Nada, M. El-Sakhawy, S.M. Kamel
    Citations: 145
    Year: 1998
  • Recent advances in cellulose-based biosensors for medical diagnosis
    Authors: S. Kamel, T.A. Khattab
    Citations: 137
    Year: 2020
  • Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution
    Authors: R.E. Abou-Zeid, S. Dacrory, K.A. Ali, S. Kamel
    Citations: 136
    Year: 2018
  • Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions
    Authors: S. Kamel, E.M. Hassan, M. El-Sakhawy
    Citations: 111
    Year: 2006
  • Protective role of zinc oxide nanoparticles-based hydrogel against wilt disease of pepper plant
    Authors: A.M. Abdelaziz, S. Dacrory, A.H. Hashem, M.S. Attia, M. Hasanin, H.M. Fouda, …
    Citations: 106
    Year: 2021