Francesco Agnelli | Graph Neural Networks | Best Researcher Award

Dr. Francesco Agnelli | Graph Neural Networks | Best Researcher Award

Dr. Francesco Agnelli, University of Milan, Italy

Francesco Agnelli is an Italian researcher and PhD candidate at the University of Milan, where he delves into the frontiers of deep learning and artificial intelligence. Born in 1998 in Cantù, Italy, Francesco began his academic journey with a stellar Bachelor’s and Master’s degree in Mathematics, both earned cum laude at the University of Insubria. His academic focus evolved from Morse Theory to applied mathematics and computational intelligence, leading to his cutting-edge research on Graph Neural Networks (GNNs). Francesco's work bridges advanced machine learning methods with real-world problems like affective computing and graph isomorphism. With industry experience at Power Reply and teaching stints in local schools, he combines theory with practical impact. Francesco also shares his knowledge as a tutor and speaker in major academic and tech platforms, including an NVIDIA webinar and the 2024 ECCV Conference. He continues to contribute to the intersection of mathematics, AI, and neural computation.

Professional Profile 

Orcid

Summary of Suitability for the 'Research for Best Researcher Award'

Francesco Agnelli stands out as an exceptional candidate for the 'Research for Best Researcher Award' due to his impressive academic background, comprehensive research experience, and contributions to cutting-edge fields in mathematics and computer science, particularly through his work with Graph Neural Networks (GNNs).

Francesco holds a Master’s degree in Mathematics with honors (110/110 cum laude) from Università degli Studi dell'Insubria, where his academic pursuits focused on computational mathematics and machine learning. His work has specifically contributed to the application of GNNs in the domains of graph isomorphism and affective computing, demonstrating his ability to innovate within highly specialized research areas. His ongoing Ph.D. studies at Università degli studi di Milano further highlight his dedication to advancing human understanding through deep learning and multi-modal input integration.

Education 

Francesco Agnelli holds a Master’s degree in Mathematics with highest honors (110/110 cum laude) from the University of Insubria, where he focused on computational mathematics and machine learning. His thesis explored the application of Graph Neural Networks to the graph isomorphism problem. During his studies, he completed an Erasmus semester at KU Leuven, Belgium, earning top grades in advanced courses like Wavelets and Applications (29/30), Life Insurance (30/30), and Machine Learning (29/30). He also earned a Bachelor’s degree in Mathematics, again with 110/110 cum laude, from the same university. Francesco participated in a 24 CFU course for teacher training and holds a Scientific High School diploma from Liceo Scientifico Enrico Fermi with a score of 96/100. Now pursuing a PhD at the University of Milan, Francesco investigates the use of GNNs in affective computing, incorporating multimodal inputs and foundation models to advance human-centered AI.

Professional Experience

Francesco Agnelli is currently a PhD student at the University of Milan, conducting research at PhuseLab on deep learning and human understanding. His work integrates Graph Neural Networks and foundation models to process multimodal affective data. Previously, Francesco worked as an IT Consultant at Power Reply in Milan, where he supported the Eni Multicard CRM project. His tasks included transitioning the system from Siebel to Salesforce, performing data analysis, and implementing technical corrections using tools like SOQL and Excel. Earlier, he served as a Mathematics and Science teacher at Istituto Comprensivo Como Lora, where he engaged with younger students to foster scientific curiosity. In parallel, he has tutored university-level courses like Mathematical Analysis and Computational Mathematics. His technical fluency spans Python (especially PyTorch), Matlab, SOQL, and Java. Francesco’s diverse experiences reflect a strong ability to bridge academic rigor with real-world application in both corporate and educational environments.

Awards and Recognition

Francesco Agnelli has received consistent recognition throughout his academic and professional journey. He graduated cum laude in both his Bachelor’s and Master’s degrees in Mathematics, reflecting outstanding academic excellence. As a department representative and member of multiple university commissions at the University of Insubria, Francesco was honored for his leadership and advocacy in academic governance. He was also selected as a university tutor, mentoring students in Mathematical Analysis and Computational Mathematics. His expertise in artificial intelligence earned him an invitation to speak at the prestigious NVIDIA webinar on "Enhancing Visual Understanding With Generative AI". Furthermore, he was a volunteer at the renowned ECCV 2024 Conference, showcasing his commitment to engaging with the AI research community. These accolades affirm his growing impact in academia and the AI research landscape, positioning him as a promising thought leader in the field of Graph Neural Networks and beyond.

Research Skill On Graph Neural Networks

Francesco Agnelli’s research skills are deeply rooted in computational mathematics, with a specialized focus on Graph Neural Networks (GNNs). His academic evolution—from Morse Theory to graph isomorphism problems—demonstrates a solid foundation in abstract mathematics and its translation into real-world computing tasks. In his PhD at the University of Milan, he explores the fusion of GNNs with affective computing, particularly multimodal input processing and fine-tuning of foundation models. His technical toolkit includes Python (PyTorch), Matlab, and data query languages like SOQL. Francesco exhibits high proficiency in integrating theoretical algorithms with deep learning frameworks, often experimenting with cross-domain solutions. He has hands-on experience working with numerical analysis, approximation methods, and neural architectures, allowing him to simulate and interpret graph-structured data effectively. His research reflects a forward-thinking and collaborative approach to AI that bridges data, emotions, and decision-making through intelligent systems grounded in strong mathematical logic.

  Publication Top Notes

  • Title: KA-GCN: Kernel-Attentive Graph Convolutional Network for 3D face analysis

  • Authors: Francesco Agnelli, Giuseppe Facchi, Giuliano Grossi, Raffaella Lanzarotti

  • Journal: Array

  • DOI: 10.1016/j.array.2025.100392

  • Year: 2025

  • Citation: Agnelli, F., Facchi, G., Grossi, G., & Lanzarotti, R. (2025). KA-GCN: Kernel-Attentive Graph Convolutional Network for 3D face analysis. Array. https://doi.org/10.1016/j.array.2025.100392

SAMEERCHAND PUDARUTH | Artificial Intelligence | Academic Excellence Award

Assoc. Prof. Dr. SAMEERCHAND PUDARUTH | Artificial Intelligence | Academic Excellence Award

Assoc. Prof. Dr. SAMEERCHAND PUDARUTH, University of Mauritius, Mauritius

Dr. Sameerchand Pudaruth is an Associate Professor in the Faculty of Information, Communication & Digital Technologies at the University of Mauritius. With a PhD in Artificial Intelligence, his expertise spans machine learning, computational linguistics, and data science. His academic journey reflects a deep commitment to technological advancement and knowledge dissemination. Having served as Head of the ICT Department (2019–2021), he played a key role in shaping academic policies and research initiatives. Dr. Pudaruth is an accomplished author and a sought-after researcher, contributing significantly to AI, distributed systems, and digital transformation. His membership in prestigious organizations such as IEEE, ACM, and IAENG highlights his standing in the global research community. Beyond academia, he is dedicated to mentoring students, fostering innovation, and driving interdisciplinary collaboration in AI. His work continues to bridge the gap between theoretical research and practical AI applications, making significant strides in Mauritius and beyond.

Professional Profile

Scopus 

Orcid

Google Scholar

Suitability for the Research for Best Researcher Award – Associate Professor Dr. Sameerchand Pudaruth

Dr. Sameerchand Pudaruth is a distinguished academic and researcher in Artificial Intelligence, Computer Science, and related fields, with a strong background in teaching, research, and leadership. With over two decades of experience, he has contributed significantly to the advancement of AI, distributed systems, multimedia, and computational linguistics. His PhD in Artificial Intelligence, combined with his legal studies, positions him uniquely at the intersection of AI and law, demonstrating an interdisciplinary approach to research.

His extensive publication record, including book chapters, conference proceedings, and journal articles, highlights his dedication to pushing the boundaries of AI, machine learning, and computational methodologies. His research contributions in legal text classification, intelligent systems, and IT support services optimization have real-world applications, making his work both academically rigorous and practically relevant. His leadership roles, including serving as Head of the ICT Department and holding senior positions in IEEE and ACM, reflect his commitment to advancing research and fostering collaboration in the global research community.

🎓 Education

Dr. Sameerchand Pudaruth holds a PhD in Artificial Intelligence from the University of Mauritius, awarded in 2020, focusing on AI-driven decision-making systems. His academic portfolio includes an MSc in Computer Science with a specialization in Distributed Systems and Multimedia (2004–2006) and a BSc (Hons) in Computer Science and Engineering (First Class) from the same institution (2000–2003). In addition, he pursued legal studies, earning an LLB from the University of London (2009–2012) and completing the Law Practitioner’s Vocational Course (2013). This diverse educational background equips him with a unique interdisciplinary perspective, blending AI, computational intelligence, and legal analytics. His continuous professional development is evident through active participation in research forums, conferences, and international collaborations. Dr. Pudaruth’s academic journey reflects a commitment to lifelong learning, innovation, and thought leadership in artificial intelligence and digital technologies.

💼 Professional Experience

Dr. Sameerchand Pudaruth has been an integral part of the University of Mauritius since 2007. Currently serving as an Associate Professor (since 2022), he previously held the positions of Senior Lecturer (2016–2022) and Lecturer (2007–2016). He also served as Head of the ICT Department (2019–2021), where he spearheaded academic advancements and research collaborations. His career is marked by expertise in AI, machine learning, and data-driven technologies, leading various projects focused on intelligent systems. He has mentored numerous postgraduate students and contributed extensively to curriculum development. Dr. Pudaruth’s industry collaborations have reinforced his reputation as a pioneer in applied AI research. His leadership in conferences and symposiums underscores his commitment to advancing knowledge in computational sciences. As an educator, researcher, and innovator, he continuously pushes the boundaries of AI applications, influencing both academia and industry.

🏅 Awards and Recognition

Dr. Sameerchand Pudaruth’s contributions to AI and computational research have earned him numerous accolades. He has been a Senior IEEE Member since 2020, recognizing his significant professional achievements. His role as a founding member and Vice-Chair of IEEE Mauritius Section (2018–2021) highlights his leadership in fostering AI research communities. He has received research grants and recognition for outstanding publications in AI, machine learning, and computational linguistics. His book “Python in One Week” (2010) and multiple Springer book chapters have cemented his reputation in AI education. His work on machine learning applications in law and data science has been widely cited, further amplifying his global impact. His membership in ACM, IAENG, and the Association for Computational Linguistics reflects his standing in the international AI research community. Through groundbreaking research, academic leadership, and scholarly contributions, Dr. Pudaruth continues to be a driving force in AI innovation.

🌍 Research Skills On Artificial Intelligence

Dr. Sameerchand Pudaruth specializes in artificial intelligence, machine learning, and computational linguistics. His expertise spans natural language processing, legal informatics, and AI-driven decision-making models. He has pioneered research in AI applications for law, healthcare, and distributed systems. With a deep understanding of neural networks, deep learning, and intelligent automation, he has contributed significantly to AI-driven knowledge systems. His work includes feature selection using evolutionary algorithms, predictive modeling, and sentiment analysis. He has led interdisciplinary collaborations to advance AI ethics, data privacy, and algorithmic fairness. His ability to translate complex AI concepts into real-world applications has led to impactful research publications. As a member of international AI organizations, he remains at the forefront of technological advancements, constantly exploring innovative solutions. Dr. Pudaruth’s research continues to influence academia, industry, and public policy, making AI more accessible and applicable across diverse domains.

 📖 Publication Top Notes

  1. Plant leaf recognition using shape features and colour histogram with K-nearest neighbour classifiers
    • Authors: T. Munisami, M. Ramsurn, S. Kishnah, S. Pudaruth
    • Citations: 262
    • Year: 2015
  2. People factors in agile software development and project management
    • Authors: V. Lalsing, S. Kishnah, S. Pudaruth
    • Citations: 195
    • Year: 2012
  3. Predicting the price of used cars using machine learning techniques
    • Authors: S. Pudaruth
    • Citations: 183
    • Year: 2014
  4. Automatic Recognition of Medicinal Plants using Machine Learning Techniques
    • Authors: A. Begue, V. Kowlessur, U. Singh, F. Mahomoodally, S. Pudaruth
    • Citations: 123
    • Year: 2017
  5. A review of mobile ad hoc NETwork (MANET) Protocols and their Applications
    • Authors: D. Ramphull, A. Mungur, S. Armoogum, S. Pudaruth
    • Citations: 98
    • Year: 2021
  6. Authorship attribution using stylometry and machine learning techniques
    • Authors: H. Ramnial, S. Panchoo, S. Pudaruth
    • Citations: 71
    • Year: 2016
  7. Sentiment analysis from Facebook comments using automatic coding in NVivo 11
    • Authors: S. Pudaruth, S. Moheeputh, N. Permessur, A. Chamroo
    • Citations: 53
    • Year: 2018
  8. Forgotten, excluded or included? Students with disabilities: A case study at the University of Mauritius
    • Authors: U. Singh, S. Pudaruth, R. Gunputh
    • Citations: 30
    • Year: 2017
  9. Resource allocation in 4G and 5G networks: A review
    • Authors: L.N. Degambur, A. Mungur, S. Armoogum, S. Pudaruth
    • Citations: 29
    • Year: 2021
  10. SuperFish: A Mobile Application for Fish Species Recognition using Image Processing Techniques and Deep Learning
  • Authors: P. Sameerchand, N. Nadeem, A. Chandani, K. Somveer, V. Munusami, S. Pudaruth
  • Citations: 26
  • Year: 2021