Md. Nahid Hasan | Computer Science | Best Researcher Awards

Mr. Md. Nahid Hasan | Computer Science | Best Researcher Awards

Mr. Md. Nahid Hasan, Dhaka International University, Bangladesh

Md. Nahid Hasan is a dedicated academic and researcher in Computer Science and Engineering, currently serving as a Lecturer at Dhaka International University. With a strong foundation in software development, machine learning, and data science, he has published several peer-reviewed articles in reputed journals and international conferences. He is known for blending advanced AI techniques with real-world challenges, particularly in health analytics, text classification, biosensors, and cybersecurity. Md. Hasan is pursuing his M.Sc. Engineering in CSE from BUET with a CGPA of 3.75 and previously graduated with distinction from Khulna University. His diverse research has garnered international attention, reflecting his deep curiosity, discipline, and passion for innovation. A former winner of the IEEE YESIST12 Innovation Challenge, he continues to contribute to both academia and industry with impactful research and teaching. Md. Hasan envisions a future driven by ethical AI and smart technologies that elevate human potential.

Profile

Google Scholar

Suitability Assessment for Research for Best Researcher Award: Md. Nahid Hasan

Md. Nahid Hasan demonstrates a strong profile for the Research for Best Researcher Award based on his academic background, research contributions, and professional engagement in the field of Computer Science & Engineering. Currently pursuing an M.Sc. in Computer Science & Engineering at Bangladesh University of Engineering and Technology (BUET), he has already established a solid foundation with a B.Sc. degree where he graduated with a commendable GPA of 3.87 and secured the 2nd position in his class.

His employment history highlights consistent academic involvement as a lecturer at reputed universities, including Dhaka International University and Daffodil International University, showcasing his dedication to both teaching and research simultaneously. This professional experience provides him with a practical platform to influence and contribute to academic development.

🎓 Education

Md. Nahid Hasan’s educational journey exemplifies academic excellence and dedication. He is currently pursuing his M.Sc. Engineering in Computer Science and Engineering from the prestigious Bangladesh University of Engineering and Technology (BUET), holding a CGPA of 3.75 with thesis remaining. His undergraduate studies were completed at Khulna University, where he graduated with a CGPA of 3.87 and secured the second position in his class. His strong foundation was built at Dinajpur Govt. College and Dinajpur Zilla School, where he achieved perfect GPAs of 5.00 in both HSC and SSC. Throughout his academic life, he has demonstrated exceptional analytical skills, logical reasoning, and innovative thinking. His curriculum has been enriched with practical programming, AI applications, and research projects, which paved the way for his contributions in machine learning, cybersecurity, and biosensor modeling. This educational background not only underpins his current research but also fuels his ambitions for advancing intelligent technologies.

💼 Professional Experience

Md. Nahid Hasan has steadily progressed through various academic roles, currently holding a Lecturer position in the Department of Computer Science and Engineering at Dhaka International University since January 2024. Prior to this, he served as a Lecturer at Daffodil International University (Jan 2023 – Jan 2024) and previously at Dhaka International University (Feb 2022 – Dec 2022). In these roles, he has taught core CSE subjects, mentored undergraduate research, and contributed to academic course development. His teaching philosophy centers around interactive learning, analytical thinking, and real-world application of computing principles. Outside the classroom, he is actively involved in research collaborations, interdisciplinary projects, and conference presentations. His industry-relevant insight and academic rigor allow him to bridge the gap between theoretical knowledge and emerging technologies. Through his academic appointments, Md. Hasan continues to inspire students, encourage innovation, and strengthen institutional research output in Bangladesh’s higher education landscape.

🏅 Awards and Recognition 

Md. Nahid Hasan’s academic journey is adorned with several accolades that reflect his brilliance and commitment. Notably, he was the Winner of the IEEE YESIST12 Innovation Challenge Track 2021, an internationally recognized competition that celebrates innovative technological solutions. He has also been a recipient of multiple merit-based scholarships throughout his undergraduate studies at Khulna University, a testament to his consistent academic performance and leadership potential. His research works have been accepted and presented at esteemed IEEE international conferences across Europe and Asia. With journal articles published in reputed outlets like Array and EAI Endorsed Transactions on IoT, he is quickly gaining recognition in global research circles. Md. Hasan’s contributions span across machine learning, bioinformatics, and cybersecurity—areas critical to the digital transformation of society. His awards not only highlight his technical abilities but also his potential to drive meaningful change through data-driven innovation.

🌍 Research Skills On Computer Science

Md. Nahid Hasan possesses a rich blend of research skills at the intersection of artificial intelligence, machine learning, and computational modeling. His expertise includes advanced statistical analysis, neural networks (ANN, LSTM, Bi-LSTM), and ensemble learning models, often applied in areas such as mental health prediction, biosensor simulation, natural language processing, and cybersecurity. He is proficient in PyTorch, Python, SQL, and C++, and utilizes LaTeX for scholarly writing. His research often involves building predictive models, performing comparative classifier analyses, and optimizing AI pipelines for complex data systems. He is also skilled in academic publishing, technical documentation, and collaborative research design. With hands-on experience in multiple IEEE conferences, Md. Hasan continues to refine his methodologies through peer feedback, interdisciplinary collaboration, and continual learning. His ability to translate real-world problems into algorithmic solutions exemplifies a future-ready research mindset grounded in ethical and impactful innovation.

📖  Publication Top Notes

  • Title: Computing Confinement Loss of Open-Channels Based PCF-SPR Sensor with ANN Approach
    Authors: N. Islam, M.S.I. Khan, M.N. Hasan, M.A. Yousuf
    Citation: 4
    Year: 2023

  • Title: Computing Optical Properties of Open–Channels Based Plasmonic Biosensor Employing Plasmonic Materials with ML Approach
    Authors: N. Islam, I.H. Shibly, M.M.S. Hasan, M.N. Hasan, M.A. Yousuf
    Citation: 4
    Year: 2023

  • Title: A Comparative Study on Machine Learning Classifiers for Cervical Cancer Prediction: A Predictive Analytic Approach
    Authors: K.M.M. Uddin, I.A. Sikder, M.N. Hasan
    Citation: 1
    Year: 2024

  • Title: An Ensemble Machine Learning-Based Approach for Detecting Malicious Websites Using URL Features
    Authors: K.M.M. Uddin, M.A. Islam, M.N. Hasan, K. Ahmad, M.A. Haque
    Citation: 1
    Year: 2023

  • Title: Stacked Ensemble Method: An Advanced Machine Learning Approach for Anomaly-based Intrusion Detection System
    Authors: A. Rahman, M.S.I. Khan, M.D.Z.A. Eidmum, P. Shaha, B. Muiz, N. Hasan, …
    Citation: — (citation not provided)
    Year: 2025

  • Title: Language Prediction of Twitch Streamers using Graph Convolutional Network
    Authors: M.N. Hasan, N. Saha, M.A. Rahman
    Citation: — (citation not provided)
    Year: 2025

  • Title: Artificial Neural Network-Assisted Confinement Loss Prediction of D-Shaped PCF-SPR Biosensor
    Authors: N. Islam, M.M.S. Hasan, M.N. Hasan, I.H. Shibly, M.A. Yousuf, M.Z. Uddin
    Citation: — (citation not provided)
    Year: 2024

  • Title: Credibility Analysis of Robot Speech Based on Bangla Language Dialect
    Authors: M.N. Hasan, R. Azim, S. Sharmin
    Citation: — (citation not provided)
    Year: 2024

  • Title: A Comparative Study on Machine Learning Classifiers for Early Diagnosis of Cervical Cancer
    Authors: I.A. Sikder, M.N. Hasan, R. Jahan, A. Mohamed, Y. Dirie
    Citation: — (citation not provided)
    Year: 2024

  • Title: Machine Learning Classification Approach for Refractive Index Prediction of D-Shape Plasmonic Biosensor
    Authors: N. Islam, M.N. Hasan, M.M.S. Hasan, I.H. Shibly, M.A. Yousuf, M.Z. Uddin
    Citation: — (citation not provided)
    Year: 2024

Tajunisha N | Computer Science | Best Faculty Award

Dr. Tajunisha N | Computer Science | Best Faculty Award

Dr. Tajunisha N, Sri Ramakrishna College of Arts & Science for Women, India

Dr. N. Tajunisha is a distinguished academician and researcher in Computer Science, currently serving as Professor and Head of the Department at Sri Ramakrishna College of Arts & Science for Women. With over 27 years of academic experience and 23 years of research expertise, she specializes in Data Mining, Machine Learning, Big Data Analytics, and Networks. She earned her Ph.D. from Mother Teresa Women’s University, Kodaikanal, and has been an influential figure in research and development. As a leader, she has held key positions such as Research Coordinator, IQAC Coordinator, and Institution Innovation Cell (IIC) President. Her contributions to academia include publishing research papers in prestigious journals, securing research funding, and mentoring Ph.D. scholars. Recognized with the Senior Educator and Scholar Award, she actively collaborates with institutions like IBM, Rently, and L&T EDUTECH. Her work continues to shape the future of Computer Science education and research.

Professional Profile

Scopus

Orcid

Google Scholar

Suitability of Dr. N. Tajunisha for the Research for Best Faculty Award

Dr. N. Tajunisha is a distinguished academic leader with a strong record of excellence in teaching, research, and institutional development. With 27 years of academic experience and 23 years of research expertise, she has significantly contributed to the fields of Data Mining, Machine Learning, Big Data Analytics, and Networks. As a Professor and Head of the Department of Computer Science at Sri Ramakrishna College of Arts & Science for Women, she has played a crucial role in shaping the institution’s academic and research landscape.

Her research contributions are noteworthy, with 34 journal publications, 25 conference papers, and 9 SCOPUS-indexed papers, along with securing Rs. 3.17 lakhs from UGC for a Minor Research Project and Rs. 76 lakhs for a DST-FIST project. Dr. Tajunisha’s role as a Ph.D. guide, having successfully mentored three doctoral scholars and currently supervising five more, reflects her dedication to research mentorship. Her collaborations with IBM, Rently, L&T EDUTECH, Easy Design System, and VConnect highlight her industry engagement, while her participation in Doctoral Committees, Board of Studies (BOS), and Programme Advisory Committees showcases her leadership in academic governance.

🎓 Education

Dr. N. Tajunisha has an extensive educational background in Computer Science and Mathematics. She earned her Ph.D. in Computer Science from Mother Teresa Women’s University, Kodaikanal, in 2013, focusing on advanced research methodologies. Before that, she completed her M.Phil. in Computer Science from Bharathiar University, where she developed expertise in data analysis and computational techniques. Her academic journey began with a Master of Computer Applications (MCA) and a Bachelor’s degree in Mathematics from Madurai Kamaraj University, providing her with a strong mathematical foundation essential for algorithm development and computational problem-solving. Her diverse academic background has equipped her with critical analytical skills, enabling her to contribute significantly to the fields of Data Mining and Machine Learning. Her education and continuous professional development have played a crucial role in her ability to drive research innovations and mentor future scholars in Computer Science.

💼 Professional Experience

Dr. N. Tajunisha has over 27 years of academic experience and 23 years in research, significantly shaping Computer Science education. As the Professor & Head of the Department of Computer Science at Sri Ramakrishna College of Arts & Science for Women, she has spearheaded numerous academic and research initiatives. From 2013 to 2018, she served as the Research Coordinator, facilitating advanced research projects and securing substantial funding, including a Rs. 76 lakh DST-FIST grant. She has also played a pivotal role as the IQAC Coordinator (2018-2022), ensuring institutional excellence. Additionally, she has served as the Institution Innovation Cell (IIC) President, fostering entrepreneurship and innovation. Her industry collaborations with IBM, Rently, and L&T EDUTECH have enriched student learning experiences. She has contributed as a Board of Studies member in multiple colleges and played an active role in doctoral committees and inspection commissions under Bharathiar University.

🏅 Awards and Recognition

Dr. N. Tajunisha’s contributions to academia have been widely recognized through numerous awards and honors. She received the prestigious Senior Educator and Scholar Award from NFED in 2017 for her outstanding contributions to Computer Science education. She has also been honored with the Best Paper Award at the IEEE International Conference held at Satyabhama University in 2010. Her research excellence is reflected in her extensive publication record, including nine Scopus-indexed journal papers. Her leadership in institutional development led to Sri Ramakrishna College of Arts & Science for Women achieving an A+ grade in NAAC Cycle II under her tenure as IQAC Coordinator. Additionally, she has been an invited session chair at international conferences and serves as a reviewer for top-tier journals. Her commitment to fostering innovation and research has positioned her as a thought leader in Data Mining, Machine Learning, and Big Data Analytics.

🌍 Research Skills On Computer Science

Dr. N. Tajunisha’s research expertise spans Data Mining, Machine Learning, Big Data Analytics, and Networks. She has successfully guided three Ph.D. scholars and is currently mentoring five more, contributing to advancements in computational intelligence and predictive analytics. Her research has secured substantial funding, including a Rs. 3.17 lakh UGC Minor Research Project and Rs. 76 lakh for a DST-FIST project. With 34 journal papers, 25 conference papers, and two books to her credit, she has made significant contributions to her field. She actively collaborates with industry leaders like IBM, Rently, and L&T EDUTECH, ensuring practical applications of her research. Her ability to integrate academic knowledge with real-world solutions makes her a leading researcher in her domain. She has also been a reviewer for international journals and a committee member in doctoral research evaluations, further enhancing her impact in the field.

📖 Publication Top Notes

  • Performance analysis of k-means with different initialization methods for high-dimensional data
    Author(s): VSN Tajunisha
    Journal: International Journal of Artificial Intelligence and Applications
    Citations: 35
    Year: 2010

  • An efficient method to improve the clustering performance for high dimensional data by principal component analysis and modified K-means
    Author(s): N Tajunisha, V Saravanan
    Journal: International Journal of Database Management Systems
    Citations: 20
    Year: 2011

  • An increased performance of clustering high dimensional data using Principal Component Analysis
    Author(s): N Tajunisha, V Saravanan
    Conference: 2010 First International Conference on Integrated Intelligent Computing
    Citations: 19
    Year: 2010

  • A study on evolution of data analytics to big data analytics and its research scope
    Author(s): S Sruthika, N Tajunisha
    Conference: 2015 International Conference on Innovations in Information, Embedded and …
    Citations: 14
    Year: 2015

  • Predicting Student Performance Using MapReduce
    Author(s): N Tajunisha, M Anjali
    Journal: International Journal of Emerging and Computer Science
    Citations: 14
    Year: 2015

  • A new approach to improve the clustering accuracy using informative genes for unsupervised microarray data sets
    Author(s): N Tajunisha, V Saravanan
    Journal: International Journal of Advanced Science and Technology
    Citations: 10
    Year: 2011

  • Automatic classification of ovarian cancer types from CT images using deep semi-supervised generative learning and convolutional neural network
    Author(s): N Nagarajan, P.H. Tajunisha
    Journal: Revue d’Intelligence Artificielle
    Citations: 9
    Year: 2021

  • Classification of cancer datasets using artificial bee colony and deep feed-forward neural networks
    Author(s): M Karunyalakshmi, N Tajunisha
    Journal: International Journal of Advanced Research in Computer and Communication …
    Citations: 8
    Year: 2017

  • Concept and Term-Based Similarity Measure for Text Classification and Clustering
    Author(s): B Sindhiya, N Tajunisha
    Journal: IJERST
    Citations: 7
    Year: 2014

  • Optimal Parameter Selection-Based Deep Semi-Supervised Generative Learning and CNN for Ovarian Cancer Classification
    Author(s): PH Nagarajan, N Tajunisha
    Journal: ICTACT Journal on Soft Computing
    Citations: 5
    Year: 2023

Alimul Rajee | Computer Science | Young Scientist Award

Mr. Alimul Rajee | Computer Science | Young Scientist Award

Mr. Alimul Rajee, Dept. of ICT, Comilla University, Kotbari, Bangladesh

Alimul Rajee is a Lecturer at the Department of Information and Communication Technology, Comilla University. His academic journey includes a stellar performance with a CGPA of 3.69 in his M.Sc. in Information Technology from Jahangirnagar University. Rajee’s research interests span Machine Learning, Data Science, Artificial Intelligence, Cyber Security, and Robotics, with a focus on real-world applications such as traffic accident data analysis and smart waste management. He has contributed significantly to several research projects, and his work has been published in prestigious journals, such as Knowledge-Based Systems and Heliyon. In addition to his research, Rajee is an active educator, mentoring students and supervising projects in areas like IoT and deep learning. His dedication extends beyond the classroom to extracurricular activities, where he has received multiple awards and recognitions, including an international award for his project at Fujitsu Research Institute in Tokyo.

Professional Profile

Scopus

Orcid

Google Scholar

Suitability Summary of Young Scientist Awards

Alimul Rajee stands out as an excellent candidate for the Research for Young Scientist Award due to his impressive academic achievements, significant research contributions, and commitment to advancing in the fields of Machine Learning, Data Science, Artificial Intelligence, Cyber Security, and IoT. He has a strong educational background, earning his M.Sc. and B.Sc. with high CGPA rankings from Jahangirnagar University, which reflects his deep knowledge and dedication to his field.

Rajee’s research work is highly commendable, with several publications in reputable, Scopus-indexed journals such as Knowledge-Based Systems and Heliyon, where he has contributed to the development of novel algorithms and methodologies, especially in big data analysis, sentiment analysis, and AI-based applications. His ongoing and completed research projects, including a hybrid smart waste management system and aspect-based sentiment analysis for Bengali text, further showcase his innovative thinking and practical application of emerging technologies to address real-world problems. Additionally, his leadership in supervising over 40 academic projects and his participation in global training programs, like those held at the Fujitsu Research Institute in Japan, illustrate his proactive approach to both learning and teaching.

🎓  Education

Alimul Rajee completed his M.Sc. in Information Technology from Jahangirnagar University, securing a CGPA of 3.69 out of 4, ranking 6th in his batch. Before this, he earned his B.Sc. (Hons.) in the same field, also from Jahangirnagar University, with a CGPA of 3.71, again securing the 6th position. Rajee’s academic excellence dates back to his secondary education, where he achieved the highest CGPA of 5.00 in both his HSC and SSC exams from Govt. Ananadamohan College and Islamnagar Sailampur High School. His continuous pursuit of academic excellence earned him merit-based scholarships throughout his education. His academic prowess has laid a strong foundation for his research and professional career, as he continues to excel in his field with a focus on cutting-edge technologies such as AI and IoT.

💼 Professional Experience

Alimul Rajee’s professional career began as a Junior Data Scientist at Oculin Tech BD Ltd., where he worked from March 2020 to May 2021. He then served as a Senior Officer (ICT) at Sonali Bank PLC for a brief period before becoming a Lecturer at Comilla University in November 2021, where he currently teaches. Rajee’s teaching journey includes roles at Bangladesh University of Business and Technology (BUBT) and Jahangirnagar University (IIT-JU), where he was a Teacher Assistant. His extensive experience also includes supervising over 40 academic projects focused on machine learning, deep learning, and IoT. As an educator, he fosters a positive learning environment, guiding students through complex technical concepts while contributing to the development of innovative research and real-world applications.

🏅  Awards and Recognition

Alimul Rajee’s achievements have been recognized at both national and international levels. He has received several awards, including the UGC Research Grant from Comilla University for consecutive fiscal years, which is a testament to his research capabilities. Rajee’s work has been recognized by prestigious institutions such as Fujitsu Research Institute (FRI) in Tokyo, where his final project won 1st prize. He has also been a reviewer for the International Conference on Embracing Industry 4.0 for Sustainable Business Growth. His consistent academic and research excellence has earned him regular merit-based scholarships and fellowships, such as the National Science & Technology Fellowship from the ICT Division of Bangladesh.

🌍 Research Skills On Computer Science

Alimul Rajee specializes in the application of cutting-edge technologies such as Machine Learning, Artificial Intelligence, Cyber Security, and IoT. His research includes a diverse range of topics like traffic accident data analysis, sentiment analysis of Bengali text, and smart waste management. Rajee has honed his expertise in Data Science and deep learning methods, contributing to several high-impact publications in renowned journals such as Knowledge-Based Systems and Heliyon. His current research projects include Aspect-Category-Opinion-Sentiment Quad Extraction for Bengali Text and a Hybrid Smart Waste Management Technique using Deep Learning and IoT. Rajee’s proficiency in data analysis, algorithm design, and system integration showcases his strong research skills and his commitment to advancing technology for societal benefit.

📖 Publication Top Notes

  • “Aspect-based sentiment analysis for Bengali text using bidirectional encoder representations from transformers (BERT)”
    • Authors: MM Samia, A Rajee, MR Hasan, MO Faruq, PC Paul
    • Citation: International Journal of Advanced Computer Science and Applications, 13(12)
    • Year: 2022
  • “Detecting the provenance of price hike in agri-food supply chain using private Ethereum blockchain network”
    • Authors: MH Sayma, MR Hasan, M Khatun, A Rajee, A Begum
    • Citation: Heliyon, 10(11)
    • Year: 2024
  • “Analyzing depression on social media utilizing machine learning and deep learning methods”
    • Authors: PC Paul, MT Ahmed, MR Hasan, A Rajee, K Sultana
    • Citation: Indian Journal of Computer Science and Engineering, 14(5), 740-746
    • Year: 2023
  • “WFFS—An ensemble feature selection algorithm for heterogeneous traffic accident data analysis”
    • Authors: A Rajee, MS Satu, MZ Abedin, KMA Ali, S Aloteibi, MA Moni
    • Citation: Knowledge-Based Systems, 113089
    • Year: 2025

Ahona Ghosh | Computer Science | Best Researcher Award

Ms. Ahona Ghosh | Computer Science | Best Researcher Award

👤 Ms. Ahona Ghosh, Maulana Abul Kalam Azad University of Technology, West Bengal, India

Ahona Ghosh is a promising researcher in the field of Computer Science and Engineering with a focus on artificial intelligence, machine learning, and rehabilitation technologies. Currently completing her Ph.D. at Maulana Abul Kalam Azad University of Technology, West Bengal, Ahona has made significant strides in the academic and research community. Her work involves a blend of deep learning, cognitive rehabilitation, and IoT-based systems for improving quality of life. With several publications in prestigious international journals and conferences, she has earned recognition for her contributions to the scientific community. Ahona has been awarded the Best Paper Award for her work on IoT-based waste management and has ranked highly in various competitions like MAKATHON’22. She is passionate about leveraging technology for social good, particularly in healthcare and rehabilitation systems.

Professional Profile

Scopus

Orcid

Google Scholar

🌟 Ms. Ahona Ghosh, Summary of Suitability

Dr. Ahona Ghosh is an outstanding candidate for the Research for Best Researcher Award, demonstrating exceptional academic accomplishments, innovative research contributions, and consistent excellence throughout her career. Her extensive academic background includes a Ph.D. in Computer Science and Engineering from Maulana Abul Kalam Azad University of Technology, West Bengal, with her pre-submission and viva completed, reflecting her advanced expertise and dedication to her field. She has received accolades for her academic and research endeavors, such as the Best Paper Award for her IoT-based waste management system and the Academic Excellence Award from Brainware University.

Her robust portfolio of research contributions includes an impressive array of international journal articles, conference papers, patents, and book chapters. Dr. Ghosh’s work spans cutting-edge topics such as deep learning, cognitive rehabilitation, IoT applications, and fuzzy systems, addressing societal challenges like healthcare, rehabilitation, and sustainable development.

🎓 Education 

Ahona Ghosh has a strong academic background, with a Ph.D. in Computer Science and Engineering from Maulana Abul Kalam Azad University of Technology (MAKAUT), where she is in the final stages of her thesis submission. She completed her Master of Technology (M.Tech.) in the same field at MAKAUT in 2019, with a CGPA of 8.73. Her Bachelor’s degree in Computer Science and Engineering (B.Tech.) was awarded by Techno India College of Technology in 2017, where she achieved a CGPA of 7.66. Ahona’s early education includes Higher Secondary in Science from Taki House Government Sponsored Girls High School, with an aggregate of 67.4%. She also passed the Madhyamik Pariksha (Class 10) from Duff High School for Girls with a remarkable score of 82.88%. Ahona is also certified in NTA-NET for the years 2018 and 2019.

💼  Professional Experience

Ahona Ghosh has worked extensively in academia and research, focusing on artificial intelligence, IoT, and healthcare applications. Currently, she is a Doctoral Fellow at Maulana Abul Kalam Azad University of Technology (MAKAUT). Her research includes contributions to cognitive rehabilitation using machine learning and EEG-based sensor systems. She has also been involved in various projects concerning IoT-based solutions for healthcare, such as designing smart systems for cognitive rehabilitation and enhancing data-driven rehabilitation methods. In addition, Ahona has been a part of multiple international conferences where she presented papers, co-authored patents, and contributed to the scientific community with impactful research. Her teaching experience includes mentoring undergraduate students and guiding research projects, as well as working on industry collaborations in technology development. Ahona’s expertise in both theoretical and applied aspects of Computer Science has shaped her as a versatile professional in the field.

🏅 Awards and Recognition

Ahona Ghosh has received several accolades for her academic and research achievements. She won the Best Paper Award at the IETE Eastern Zonal Seminar with ISF Congress in 2017 for her paper on “Waste Management System Based on Internet of Things (IoT)”. Her innovative contributions earned her the Academic Excellence Award from Brainware University in January 2020, based on exceptional student feedback. She also achieved 2nd place in the MAKATHON’22 competition organized by MAKAUT’s Innovation Council. Ahona’s recognition extends beyond awards, as she is a prominent figure in academic circles, having presented her research at several prestigious IEEE conferences. Her qualifications include passing the NTA-NET exams in 2018 and 2019, reinforcing her academic prowess. Ahona’s dedication to research and innovation continues to receive recognition, making her an influential presence in her field.

🌍 Research Skills On Computer Science 

Ahona Ghosh has developed a comprehensive set of research skills, particularly in the areas of Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Rehabilitation. Her expertise extends to using IoT for healthcare applications, including creating systems for rehabilitative therapy and mental health analysis. Ahona is proficient in data analysis, algorithm design, and modeling for both real-time and research-driven applications. Her experience with neural networks, sensor systems, and signal processing further enhances her ability to tackle complex problems. Ahona has contributed to developing innovative frameworks using fuzzy logic, sensor networks, and electroencephalography (EEG) in health-related projects. She excels in academic writing, having published in numerous peer-reviewed journals and international conferences. Additionally, she is well-versed in patent filing, research methodology, and project management, which are crucial in carrying out high-impact scientific work.

📖 Publication Top Notes

Scope of Sentiment Analysis On News Articles Regarding Stock Market and GDP in Struggling Economic Condition
  • Authors: S Biswas, A Ghosh, S Chakraborty, S Roy, R Bose
    Journal: International Journal of Emerging Trends in Engineering Research, 8 (7), 3594
    Citation: 30
    Year: 2020
A Detailed Study on Data Centre Energy Efficiency and Efficient Cooling Techniques
  • Authors: D Mukherjee, S Chakraborty, I Sarkar, A Ghosh, S Roy
    Journal: International Journal of Advanced Trends in Computer Science and Engineering
    Citation: 26
    Year: 2020
Recognition of hand gesture image using deep convolutional neural network
  • Authors: KM Sagayam, AD Andrushia, A Ghosh, O Deperlioglu, AA Elngar
    Journal: International Journal of Image and Graphics, 22 (03), 2140008
    Citation: 22
    Year: 2022
Service aware resource management into cloudlets for data offloading towards IoT
  • Authors: D Guha Roy, B Mahato, A Ghosh, D De
    Journal: Microsystem Technologies, 1-15
    Citation: 21
    Year: 2022
Mathematical modelling for decision making of lockdown during COVID-19
  • Authors: A Ghosh, S Roy, H Mondal, S Biswas, R Bose
    Journal: Applied Intelligence
    Citation: 17
    Year: 2021
Secured Energy-Efficient Routing in Wireless Sensor Networks Using Machine Learning Algorithm: Fundamentals and Applications
  • Authors: A Ghosh, CC Ho, R Bestak
    Journal: Deep Learning Strategies for Security Enhancement in Wireless Sensor Networks
    Citation: 12
    Year: 2020
A survey on Internet-of-Thing applications using electroencephalogram
  • Authors: D Chakraborty, A Ghosh, S Saha
    Book: Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach, 21-47
    Citation: 12
    Year: 2020
Rehabilitation using neighbor-cluster based matching inducing artificial bee colony optimization
  • Authors: S Saha, A Ghosh
    Conference: 2019 IEEE 16th India Council International Conference (INDICON), 1-4
    Citation: 12
    Year: 2019
Dtnma: identifying routing attacks in delay-tolerant network
  • Authors: S Chatterjee, M Nandan, A Ghosh, S Banik
    Book: Cyber Intelligence and Information Retrieval: Proceedings of CIIR 2021, 3-15
    Citation: 11
    Year: 2022
Emotion detection using generative adversarial network
  • Authors: S Das, A Ghosh
    Book: Generative Adversarial Networks and Deep Learning, 165-182
    Citation: 10
    Year: 2023