Yakshansh Kumar | Engineering | Best Researcher Award

Mr. Yakshansh Kumar | Engineering | Best Researcher Award

Mr. Yakshansh Kumar, Delhi Technological University, India

Yakshansh Kumar is a highly motivated researcher and academician in the field of Civil Engineering, with a specialization in Pavement-Soil Dynamics. Currently pursuing his PhD at Delhi Technological University, he focuses on dynamic response analysis of pavement-soil systems using piezo sensors. He has actively contributed to several publications and international conferences, establishing himself as a promising expert in geotechnical engineering. Passionate about advancing knowledge and fostering innovation, Yakshansh is also involved in mentoring students and advancing research projects. His dedication and commitment are evident in his academic achievements and research pursuits.

Professional Profile

Scopus

Orcid

Google Scholar

Summary of Suitability for the “Research for Best Researcher Award”

Yakshansh Kumar is a promising and dedicated researcher with a strong academic foundation and a demonstrated commitment to advancing the field of civil and geotechnical engineering, particularly in pavement-soil dynamics. Currently pursuing a Ph.D. at Delhi Technological University, his research focus on dynamic response analysis of pavement-soil systems using piezo sensors exemplifies his innovative approach to solving complex engineering challenges. His research is not only theoretically robust but also applied, with funding from the university’s IRD and the use of experimental testing and finite element analysis in his investigations.

Kumar’s publication record is impressive, with multiple articles in high-impact journals such as International Journal of Non-Linear Mechanics (SCIE, Q1) and Journal of Vibration Engineering and Technologies (SCIE, Q2). He has contributed to the scientific community with key insights on dynamic load vibrations, piezo-dynamics, and the role of machine learning in geotechnical analysis. His research has garnered attention on both national and international platforms, demonstrated by his active participation in numerous conferences, where he has won awards for best technical papers.

🎓  Education

Yakshansh Kumar holds a PhD in Civil Engineering from Delhi Technological University (DTU), where he is conducting research on the dynamic analysis of pavement-soil systems. He earned his Master’s degree in Geotechnical Engineering from DTU, achieving a CGPA of 7.49. He completed his Bachelor’s degree in Civil Engineering at Hindu College of Engineering (affiliated with DCRUSTM) with a CGPA of 6.37. Throughout his academic career, Yakshansh has demonstrated a strong foundation in engineering principles, with a specific interest in soil dynamics and pavement systems. His rigorous research work has led to multiple scholarly contributions in well-regarded journals and international conferences.

💼 Professional Experience

Yakshansh Kumar has an extensive academic and research background. He is currently working on his PhD project, funded by the IRD-DTU, which focuses on pavement-soil dynamics using piezo sensors for experimental testing and finite element analysis. As part of his professional journey, Yakshansh has contributed to several research papers, conferences, and has collaborated with experts in geotechnical engineering. He has also participated as a reviewer in esteemed journals such as Transportation Infrastructure Geotechnology. In addition to his research, he has attended workshops and seminars, including a national seminar on Science Day and faculty development programs, showcasing his dedication to continuous learning. His involvement in teaching and research continues to shape his career path.

🏅  Awards and Recognition

Yakshansh Kumar has been recognized for his outstanding contributions to research and academic excellence. He was awarded the Best Technical Paper Award for his work on “Velocity Induced Post Elastic Response of Pavements” presented at the Sustainable Infrastructure: Innovations, Opportunities, and Challenges (SIIOC 2024). In addition, his paper on “Post Elastic Response of Pavement Subjected to Moving Load” received the Best Paper Award at the International Online Conference on Energy Science (ICES 2021). His work has been published in high-impact journals such as the International Journal of Non-Linear Mechanics and Journal of Vibration Engineering and Technologies. He has also been recognized as a reviewer for journals and international conferences, reflecting his academic credibility and recognition in the field of geotechnical engineering.

🌍 Research Skills On Engineering

Yakshansh Kumar possesses strong research skills, particularly in the areas of pavement-soil dynamics, finite element analysis, and piezo-dynamics of geomaterials. His expertise lies in dynamic response analysis using experimental testing and numerical modeling. His ongoing PhD project focuses on piezo sensors and their application to pavement systems, supported by funding from IRD-DTU. Yakshansh has demonstrated his proficiency in using advanced software for computational modeling and simulations, as well as conducting real-world experimental tests. His research contributes to understanding the behavior of pavements under dynamic loads, which is vital for improving infrastructure performance. His skills are complemented by his ability to collaborate with peers, present research at conferences, and publish in well-regarded journals.

📖 Publication Top Notes

  • Damage evaluation in pavement-geomaterial system using finite element-scaled accelerated pavement testing

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2023). Damage evaluation in pavement-geomaterial system using finite element-scaled accelerated pavement testing. Transportation Infrastructure Geotechnology, 11(3), 922-933.
    • Year: 2023
  • Damage evaluation in pavement-geomaterial system using finite element-scaled accelerated pavement testing

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2024). Damage evaluation in pavement-geomaterial system using finite element-scaled accelerated pavement testing. Transportation Infrastructure Geotechnology, 11(3), 922-933.
    • Year: 2024
  • Deflections governed by the cyclic strength of rigid pavement subjected to structural vibration due to high-velocity moving loads

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2024). Deflections governed by the cyclic strength of rigid pavement subjected to structural vibration due to high-velocity moving loads. Journal of Vibration Engineering & Technologies, 12(3), 3543-3562.
    • Year: 2024
  • Investigating the Influence of Frequency on Piezo-dynamics of Polyvinylidene Fluoride (PVDF) Films Embedded in Confined Geomaterials

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2024). Investigating the Influence of Frequency on Piezo-dynamics of Polyvinylidene Fluoride (PVDF) Films Embedded in Confined Geomaterials. Journal of Vibration Engineering & Technologies, 1-20.
    • Year: 2024
  • Application of machine learning technique for dynamic analysis of confined geomaterial subjected to vibratory load

    • Authors: A Boban, P Pateriya, Y Kumar, K Gaur, A Trivedi
    • Citation: Boban, A., Pateriya, P., Kumar, Y., Gaur, K., & Trivedi, A. (2024). Application of machine learning technique for dynamic analysis of confined geomaterial subjected to vibratory load. AI in Civil Engineering, 3(1), 2.
    • Year: 2024
  • Influence of Jute Reinforcement on the Stiffness Capacity of Cohesionless Pavement Geomaterials

    • Authors: P Kumar, Y Kumar, A Trivedi
    • Citation: Kumar, P., Kumar, Y., & Trivedi, A. (2023). Influence of Jute Reinforcement on the Stiffness Capacity of Cohesionless Pavement Geomaterials. International Conference on Interdisciplinary Approaches in Civil Engineering.
    • Year: 2023
  • Numerical and Experimental Investigation of a Confined Geomaterial Subjected to Vibratory Load

    • Authors: A Boban, Y Kumar, A Trivedi
    • Citation: Boban, A., Kumar, Y., & Trivedi, A. (2023). Numerical and Experimental Investigation of a Confined Geomaterial Subjected to Vibratory Load. International Conference on Sustainable Infrastructure: Innovation.
    • Year: 2023
  • Impact of Moving Load Vibrations on Pavement Damage Supported by Flow-Controlled Geomaterials

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2024). Impact of Moving Load Vibrations on Pavement Damage Supported by Flow-Controlled Geomaterials. Available at SSRN 5002829.
    • Year: 2024