Shagufta Riaz | Engineering | Women Researcher Award

Dr. Shagufta Riaz | Engineering | Women Researcher Award

Dr. Shagufta Riaz, National Textile University, Pakistan 

Dr. Shagufta Riaz is an Assistant Professor in the Department of Textile Engineering at National Textile University, Faisalabad, Pakistan. With a Ph.D. in Textile Engineering, she specializes in functional textiles, focusing on the use of nanomaterials for textile development. Dr. Riaz has authored several influential publications and has completed various high-impact research projects. She has worked as a researcher at the Wilson School of Textiles in the USA and is actively involved in advancing textile innovations. A member of prestigious international organizations like the Textile Institute and the Pakistan Engineering Council, Dr. Riaz is committed to sustainable textile solutions.

Professional Profile

Scopus

Google Scholar

Suitability of Dr. Shagufta Riaz for the Research for Women Researcher Award

Dr. Shagufta Riaz is a highly accomplished researcher in textile engineering, specializing in functional textiles and nanotechnology applications. Her extensive academic background, including a Ph.D. in Textile Engineering and international research experience at the Wilson School of Textiles, NCSU, USA, demonstrates her expertise in the field. She has significantly contributed to the advancement of sustainable textile innovations, textile finishing, and the development of nanomaterials for multifunctional textile applications. As an HEC Ph.D. Approved Supervisor and a Fellow of the Textile Institute, UK, she has played a crucial role in mentoring young researchers and advancing academic excellence in textile engineering.

Her research portfolio includes several high-impact projects funded at both national and international levels, focusing on crucial areas such as RF-shielding maternity garments, recycling of cellulosic waste for graphene quantum dots, and sustainable bio-processing in textile manufacturing. Additionally, her collaborations with industry highlight her ability to bridge the gap between academic research and practical industrial applications. Notable projects include the development of antibacterial medical gauze, pesticide-resistant clothing, and UV-shielding protective garments, which showcase her commitment to improving textile functionality for real-world challenges.

🎓 Education

Dr. Shagufta Riaz holds a Ph.D. in Textile Engineering from National Textile University, Faisalabad, Pakistan, where she also completed her M.Sc. in Textile Advanced Materials Engineering and B.Sc. in Textile Engineering with distinctions. She further honed her skills as a researcher at the Wilson School of Textiles, North Carolina State University, USA. This educational foundation, coupled with her hands-on research experience, forms the backbone of her expertise in nanotechnology, textile finishing, and sustainable textile innovations.

💼 Professional Experience

Dr. Shagufta Riaz is an Assistant Professor at National Textile University, Faisalabad. She has led and collaborated on multiple research projects, including those in partnership with international institutions and the textile industry. Her professional experience spans research in textile engineering, focusing on nanomaterials and sustainable solutions. Dr. Riaz has consulted on industry projects to optimize processes in textile production, such as designing protective garments and improving fabric properties. Her role as a Ph.D. supervisor and her recognition as a Fellow of the Textile Institute, UK, highlight her significant contribution to academia and industry.

🏅 Awards and Recognition

Dr. Shagufta Riaz’s academic excellence is evidenced by her recognition as a Fellow of the Textile Institute, UK, and a Lifetime Member of the Pakistan Engineering Council. She has received multiple accolades for her contributions to textile engineering, including a significant number of awards for her research in nanotechnology and textile innovations. Her work, recognized internationally, is reflected in numerous high-impact publications and the completion of major research and consultancy projects in collaboration with the textile industry.

🌍 Research Skills On Engineering

Dr. Riaz is an expert in nanotechnology applications in textile engineering, particularly for the development of multifunctional textiles. Her research focuses on the integration of nanomaterials to enhance textile properties such as antimicrobial, UV resistance, and electrical shielding. She has completed several research projects under government and industry funding, contributing valuable advancements in sustainable textiles, functional finishes, and eco-friendly processes. Dr. Riaz’s skills extend to guiding doctoral research and publishing in prestigious journals, marking her as a leading researcher in textile engineering.

📖 Publication Top Notes

  • Fabrication of robust multifaceted textiles by application of functionalized TiO₂ nanoparticles

    • Authors: S. Riaz, M. Ashraf, T. Hussain, M.T. Hussain, A. Younus
    • Citations: 95
    • Year: 2019
  • Functional finishing and coloration of textiles with nanomaterials

    • Authors: S. Riaz, M. Ashraf, T. Hussain, M.T. Hussain, A. Rehman, A. Javid, K. Iqbal, …
    • Citations: 77
    • Year: 2018
  • Modification of silica nanoparticles to develop highly durable superhydrophobic and antibacterial cotton fabrics

    • Authors: S. Riaz, M. Ashraf, T. Hussain, M.T. Hussain
    • Citations: 58
    • Year: 2019
  • Electrospun nanofiber-based viroblock/ZnO/PAN hybrid antiviral nanocomposite for personal protective applications

    • Authors: A. Salam, T. Hassan, T. Jabri, S. Riaz, A. Khan, K.M. Iqbal, S. Khan, M. Wasim, …
    • Citations: 41
    • Year: 2021
  • Cationization of TiO₂ nanoparticles to develop highly durable multifunctional cotton fabric

    • Authors: S. Riaz, M. Ashraf, H. Aziz, A. Younus, M. Umair, A. Salam, K. Iqbal, …
    • Citations: 31
    • Year: 2022
  • Layer by layer deposition of PEDOT, silver and copper to develop durable, flexible, and EMI shielding and antibacterial textiles

    • Authors: S. Riaz, S. Naz, A. Younus, A. Javid, S. Akram, A. Nosheen, M. Ashraf
    • Citations: 26
    • Year: 2022
  • Multifunctional formaldehyde-free finishing of cotton by using metal oxide nanoparticles and eco-friendly cross-linkers

    • Authors: N. Sarwar, M. Ashraf, M. Mohsin, A. Rehman, A. Younus, A. Javid, K. Iqbal, …
    • Citations: 24
    • Year: 2019
  • In situ development and application of natural coatings on non-absorbable sutures to reduce incision site infections

    • Authors: R. Masood, T. Hussain, M. Umar, Azeemullah, T. Areeb, S. Riaz
    • Citations: 21
    • Year: 2017
  • Selection and Optimization of Silane Coupling Agents to Develop Durable Functional Cotton Fabrics Using TiO₂ Nanoparticles

    • Authors: S. Riaz, M. Ashraf, T. Hussain, M.T. Hussain, A. Younus, M. Raza, A. Nosheen
    • Citations: 20
    • Year: 2021
  • Simultaneous fixation of wrinkle-free finish and reactive dye on cotton using response surface methodology

    • Authors: S. Abid, T. Hussain, A. Nazir, Z.A. Raza, A. Siddique, A. Azeem, S. Riaz
    • Citations: 16
    • Year: 2018

Yakshansh Kumar | Engineering | Best Researcher Award

Mr. Yakshansh Kumar | Engineering | Best Researcher Award

Mr. Yakshansh Kumar, Delhi Technological University, India

Yakshansh Kumar is a highly motivated researcher and academician in the field of Civil Engineering, with a specialization in Pavement-Soil Dynamics. Currently pursuing his PhD at Delhi Technological University, he focuses on dynamic response analysis of pavement-soil systems using piezo sensors. He has actively contributed to several publications and international conferences, establishing himself as a promising expert in geotechnical engineering. Passionate about advancing knowledge and fostering innovation, Yakshansh is also involved in mentoring students and advancing research projects. His dedication and commitment are evident in his academic achievements and research pursuits.

Professional Profile

Scopus

Orcid

Google Scholar

Summary of Suitability for the “Research for Best Researcher Award”

Yakshansh Kumar is a promising and dedicated researcher with a strong academic foundation and a demonstrated commitment to advancing the field of civil and geotechnical engineering, particularly in pavement-soil dynamics. Currently pursuing a Ph.D. at Delhi Technological University, his research focus on dynamic response analysis of pavement-soil systems using piezo sensors exemplifies his innovative approach to solving complex engineering challenges. His research is not only theoretically robust but also applied, with funding from the university’s IRD and the use of experimental testing and finite element analysis in his investigations.

Kumar’s publication record is impressive, with multiple articles in high-impact journals such as International Journal of Non-Linear Mechanics (SCIE, Q1) and Journal of Vibration Engineering and Technologies (SCIE, Q2). He has contributed to the scientific community with key insights on dynamic load vibrations, piezo-dynamics, and the role of machine learning in geotechnical analysis. His research has garnered attention on both national and international platforms, demonstrated by his active participation in numerous conferences, where he has won awards for best technical papers.

🎓  Education

Yakshansh Kumar holds a PhD in Civil Engineering from Delhi Technological University (DTU), where he is conducting research on the dynamic analysis of pavement-soil systems. He earned his Master’s degree in Geotechnical Engineering from DTU, achieving a CGPA of 7.49. He completed his Bachelor’s degree in Civil Engineering at Hindu College of Engineering (affiliated with DCRUSTM) with a CGPA of 6.37. Throughout his academic career, Yakshansh has demonstrated a strong foundation in engineering principles, with a specific interest in soil dynamics and pavement systems. His rigorous research work has led to multiple scholarly contributions in well-regarded journals and international conferences.

💼 Professional Experience

Yakshansh Kumar has an extensive academic and research background. He is currently working on his PhD project, funded by the IRD-DTU, which focuses on pavement-soil dynamics using piezo sensors for experimental testing and finite element analysis. As part of his professional journey, Yakshansh has contributed to several research papers, conferences, and has collaborated with experts in geotechnical engineering. He has also participated as a reviewer in esteemed journals such as Transportation Infrastructure Geotechnology. In addition to his research, he has attended workshops and seminars, including a national seminar on Science Day and faculty development programs, showcasing his dedication to continuous learning. His involvement in teaching and research continues to shape his career path.

🏅  Awards and Recognition

Yakshansh Kumar has been recognized for his outstanding contributions to research and academic excellence. He was awarded the Best Technical Paper Award for his work on “Velocity Induced Post Elastic Response of Pavements” presented at the Sustainable Infrastructure: Innovations, Opportunities, and Challenges (SIIOC 2024). In addition, his paper on “Post Elastic Response of Pavement Subjected to Moving Load” received the Best Paper Award at the International Online Conference on Energy Science (ICES 2021). His work has been published in high-impact journals such as the International Journal of Non-Linear Mechanics and Journal of Vibration Engineering and Technologies. He has also been recognized as a reviewer for journals and international conferences, reflecting his academic credibility and recognition in the field of geotechnical engineering.

🌍 Research Skills On Engineering

Yakshansh Kumar possesses strong research skills, particularly in the areas of pavement-soil dynamics, finite element analysis, and piezo-dynamics of geomaterials. His expertise lies in dynamic response analysis using experimental testing and numerical modeling. His ongoing PhD project focuses on piezo sensors and their application to pavement systems, supported by funding from IRD-DTU. Yakshansh has demonstrated his proficiency in using advanced software for computational modeling and simulations, as well as conducting real-world experimental tests. His research contributes to understanding the behavior of pavements under dynamic loads, which is vital for improving infrastructure performance. His skills are complemented by his ability to collaborate with peers, present research at conferences, and publish in well-regarded journals.

📖 Publication Top Notes

  • Damage evaluation in pavement-geomaterial system using finite element-scaled accelerated pavement testing

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2023). Damage evaluation in pavement-geomaterial system using finite element-scaled accelerated pavement testing. Transportation Infrastructure Geotechnology, 11(3), 922-933.
    • Year: 2023
  • Damage evaluation in pavement-geomaterial system using finite element-scaled accelerated pavement testing

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2024). Damage evaluation in pavement-geomaterial system using finite element-scaled accelerated pavement testing. Transportation Infrastructure Geotechnology, 11(3), 922-933.
    • Year: 2024
  • Deflections governed by the cyclic strength of rigid pavement subjected to structural vibration due to high-velocity moving loads

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2024). Deflections governed by the cyclic strength of rigid pavement subjected to structural vibration due to high-velocity moving loads. Journal of Vibration Engineering & Technologies, 12(3), 3543-3562.
    • Year: 2024
  • Investigating the Influence of Frequency on Piezo-dynamics of Polyvinylidene Fluoride (PVDF) Films Embedded in Confined Geomaterials

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2024). Investigating the Influence of Frequency on Piezo-dynamics of Polyvinylidene Fluoride (PVDF) Films Embedded in Confined Geomaterials. Journal of Vibration Engineering & Technologies, 1-20.
    • Year: 2024
  • Application of machine learning technique for dynamic analysis of confined geomaterial subjected to vibratory load

    • Authors: A Boban, P Pateriya, Y Kumar, K Gaur, A Trivedi
    • Citation: Boban, A., Pateriya, P., Kumar, Y., Gaur, K., & Trivedi, A. (2024). Application of machine learning technique for dynamic analysis of confined geomaterial subjected to vibratory load. AI in Civil Engineering, 3(1), 2.
    • Year: 2024
  • Influence of Jute Reinforcement on the Stiffness Capacity of Cohesionless Pavement Geomaterials

    • Authors: P Kumar, Y Kumar, A Trivedi
    • Citation: Kumar, P., Kumar, Y., & Trivedi, A. (2023). Influence of Jute Reinforcement on the Stiffness Capacity of Cohesionless Pavement Geomaterials. International Conference on Interdisciplinary Approaches in Civil Engineering.
    • Year: 2023
  • Numerical and Experimental Investigation of a Confined Geomaterial Subjected to Vibratory Load

    • Authors: A Boban, Y Kumar, A Trivedi
    • Citation: Boban, A., Kumar, Y., & Trivedi, A. (2023). Numerical and Experimental Investigation of a Confined Geomaterial Subjected to Vibratory Load. International Conference on Sustainable Infrastructure: Innovation.
    • Year: 2023
  • Impact of Moving Load Vibrations on Pavement Damage Supported by Flow-Controlled Geomaterials

    • Authors: Y Kumar, A Trivedi, SK Shukla
    • Citation: Kumar, Y., Trivedi, A., & Shukla, S. K. (2024). Impact of Moving Load Vibrations on Pavement Damage Supported by Flow-Controlled Geomaterials. Available at SSRN 5002829.
    • Year: 2024

Farzad Pashmforoush | Engineering | Best Researcher Award

Assoc. Prof. Dr. Farzad Pashmforoush | Engineering | Best Researcher Award

Assoc. Prof. Dr. Farzad Pashmforoush, University of Maragheh, Iran

Farzad Pashmforoush is a distinguished Associate Professor at the University of Maragheh, specializing in Mechanical Engineering. Born on July 31, 1987, he has dedicated his career to advancing research in composite materials, artificial intelligence, finite element methods, and non-destructive testing. His academic journey began at the University of Tabriz, where he ranked first in his Bachelor’s program. He continued his education at Amirkabir University of Technology, earning both his Master’s and PhD with exceptional grades. Dr. Pashmforoush’s contributions to the field are reflected in his extensive research on damage identification in composite structures, optimization techniques, and material characterization. With numerous high-impact publications, citations, and an h-index of 9, his work has influenced academia and industry alike. His passion for innovation and excellence has earned him significant recognition, making him a leading figure in mechanical engineering research.

Professional Profile

Google Scholar

Suitability for the Research for Best Researcher Award – Farzad Pashmforoush

Dr. Farzad Pashmforoush is a distinguished researcher and academic with a strong background in mechanical engineering, particularly in areas such as composite materials, finite element method (FEM), artificial intelligence, fracture mechanics, and non-destructive testing (NDT). His academic journey reflects excellence at every level, securing top ranks during his Bachelor’s and Master’s degrees, followed by a high distinction PhD from Amirkabir University of Technology. His doctoral work on the numerical-experimental study of magnetic abrasive finishing of optical glass showcases innovative problem-solving abilities and a commitment to advancing material science and manufacturing techniques.

His research contributions are extensive and impactful, as evidenced by 26 high-quality journal publications in esteemed journals, over 400 citations, and an h-index of 9 on Google Scholar. His works span damage characterization in composite materials, deep learning for autonomous damage recognition, optimization techniques, and multiphysics simulations, demonstrating a multidisciplinary approach to mechanical engineering. Additionally, his application of artificial intelligence in non-destructive evaluation and advanced material testing methods showcases his ability to integrate cutting-edge technology into engineering research.

🎓 Education

Farzad Pashmforoush’s academic journey began at the University of Tabriz, where he completed his Bachelor of Science in Mechanical Engineering in 2009, ranking first with a grade of 18.86. He continued his education at Amirkabir University of Technology, earning a Master of Science in 2011, with a thesis on damage modes in composite materials, also achieving first rank. He further advanced his studies, obtaining a Ph.D. in Mechanical Engineering from the same university in 2015. His doctoral thesis focused on numerical-experimental studies of magnetic abrasive finishing of optical glass. Throughout his academic career, Farzad maintained an outstanding academic performance, receiving top grades and contributing to innovative research. His advanced training and in-depth knowledge of mechanical engineering have set the foundation for a successful academic and research career.

💼 Professional Experience

Farzad Pashmforoush has had a distinguished academic career, with extensive experience as an Associate Professor in Mechanical Engineering at the University of Maragheh. He has taught and mentored students in advanced topics such as composite materials, non-destructive testing, and fracture mechanics. His research focuses on finite element methods, artificial intelligence applications in engineering, and composite material behavior. Farzad has also collaborated with international institutions on projects involving acoustic emission techniques for damage detection in composites and the optimization of manufacturing processes. His expertise in experimental mechanics, data analysis, and numerical modeling has resulted in numerous high-impact publications. As an educator and researcher, he is dedicated to advancing engineering technology while fostering the next generation of engineers through innovative teaching and research initiatives.

🏅 Awards and Recognition

Farzad Pashmforoush has received numerous accolades throughout his career for his outstanding contributions to mechanical engineering. He was recognized as a top graduate in both his undergraduate and graduate studies, receiving the first-rank distinction at both the University of Tabriz and Amirkabir University of Technology. His research on composite materials, non-destructive testing, and fracture mechanics has earned him high citation counts and recognition from peers in the academic community. Additionally, Farzad has been acknowledged for his role in advancing mechanical engineering research and education, earning grants and research funding for innovative projects. His excellence in teaching and research, along with his impactful publications, continues to shape the future of engineering education and practice.

🌍 Research Skills On Engineering

Farzad Pashmforoush possesses a broad range of research skills, making him a leading expert in his field. His proficiency in finite element methods (FEM) allows him to model and analyze complex engineering problems, particularly in the areas of composite materials and structural analysis. Farzad’s research integrates artificial intelligence techniques, such as deep learning, to enhance the evaluation and optimization of engineering processes. His extensive use of non-destructive testing (NDT) methods, particularly acoustic emission, enables him to study material behavior and detect damage in real-time. In addition, his expertise in fracture mechanics and damage detection provides valuable insights into the durability and performance of materials. Farzad’s approach combines theoretical analysis with experimental validation, ensuring the practical application of his research in industry. His innovative use of advanced technologies and methodologies has garnered widespread recognition in the engineering community.

📖 Publication Top Notes 

  • “Autonomous damage recognition in visual inspection of laminated composite structures using deep learning”

    • Authors: S. Fotouhi, F. Pashmforoush, M. Bodaghi, M. Fotouhi
    • Journal: Composite Structures
    • Citation: 87
    • Year: 2021
  • “Characterization of composite materials damage under quasi-static three-point bending test using wavelet and fuzzy C-means clustering”

    • Authors: M. Fotouhi, H. Heidary, M. Ahmadi, F. Pashmforoush
    • Journal: Journal of Composite Materials
    • Citation: 86
    • Year: 2012
  • “Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm”

    • Authors: F. Pashmforoush, R. Khamedi, M. Fotouhi, M. Hajikhani, M. Ahmadi
    • Journal: Journal of Nondestructive Evaluation
    • Citation: 83
    • Year: 2014
  • “Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm”

    • Authors: F. Pashmforoush, M. Fotouhi, M. Ahmadi
    • Journal: Journal of Reinforced Plastics and Composites
    • Citation: 72
    • Year: 2012
  • “Damage characterization of glass/epoxy composite under three-point bending test using acoustic emission technique”

    • Authors: F. Pashmforoush, M. Fotouhi, M. Ahmadi
    • Journal: Journal of Materials Engineering and Performance
    • Citation: 66
    • Year: 2012
  • “Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy”

    • Authors: F. Pashmforoush, R. D. Bagherinia
    • Journal: Journal of Cleaner Production
    • Citation: 64
    • Year: 2018
  • “Monitoring the initiation and growth of delamination in composite materials using acoustic emission under quasi-static three-point bending test”

    • Authors: M. Fotouhi, F. Pashmforoush, M. Ahmadi, A. Refahi Oskouei
    • Journal: Journal of Reinforced Plastics and Composites
    • Citation: 64
    • Year: 2011
  • “Statistical analysis on free vibration behavior of functionally graded nanocomposite plates reinforced by graphene platelets”

    • Authors: F. Pashmforoush
    • Journal: Composite Structures
    • Citation: 48
    • Year: 2019
  • “Nano-finishing of BK7 optical glass using magnetic abrasive finishing process”

    • Authors: F. Pashmforoush, A. Rahimi
    • Journal: Applied Optics
    • Citation: 42
    • Year: 2015
  • “Interfacial characteristics and thermo-mechanical properties of calcium carbonate/polystyrene nanocomposite”

    • Authors: F. Pashmforoush, S. Ajori, H. R. Azimi
    • Journal: Materials Chemistry and Physics
    • Citation: 27
    • Year: 2020

 

Asad Ali | Engineering | Best Researcher Award

Dr. Asad Ali | Engineering | Best Researcher Award

Dr. Asad Ali, Jiangsu University, China

Asad Ali is a dynamic and passionate Mechanical Engineer with a strong focus on fluid machinery, turbomachinery, and two-phase flow in pumps. Holding a Ph.D. from Jiangsu University, his research spans across various areas of power engineering, thermo-physics, and fluid dynamics. Ali is known for his hands-on approach to problem-solving and his ability to thrive both independently and as part of a collaborative team. With an impressive academic record and a love for challenges, Ali continuously seeks to apply innovative solutions in engineering. He is also actively involved in academic events and has been recognized for his contributions to research and innovation.

Professional Profile

scopus

Suitability of Summary

Asad Ali is highly suitable for the “Research for Best Researcher Award” due to his extensive academic background, valuable contributions to mechanical engineering, and significant research in fluid machinery and two-phase flow dynamics. Holding a Ph.D. in Mechanical Engineering from Jiangsu University, Asad has demonstrated exceptional expertise in fluid mechanics, multiphase flow modeling, and pump performance analysis, specifically in the areas of gas-liquid two-phase flow in electrical submersible pumps and centrifugal pumps.

His research, particularly his work on unsteady gas-liquid two-phase flow, has not only advanced knowledge in his field but also provided practical insights into reducing noise and improving the efficiency of pumps in various industrial applications. Asad’s thesis on “Performance Evaluation and Unsteady Inner-Flow Characteristics of Mixed-Flow Type Electrical Submersible Pumps” is a notable example of his ability to merge experimental and computational methods to address real-world engineering challenges.

Education

Asad Ali earned his Ph.D. in Mechanical Engineering from Jiangsu University in 2023, with a specialization in Power Engineering and Engineering Thermo-physics. His thesis focused on “Numerical and Experimental Study on Performance Evaluation and Unsteady Inner-Flow Characteristics of Mixed-Flow Type Electrical Submersible Pumps under Gas-Liquid Two-Phase Flow.” Prior to his doctoral work, he completed an M.Sc. in the same field at Jiangsu University with a distinction (89.9%). His undergraduate studies were completed at the University of Agriculture, Faisalabad, where he obtained a B.Sc. in Agricultural Engineering, graduating with an A+ grade and a CGPA of 3.61. Ali’s academic journey is marked by excellence in both theoretical and applied engineering concepts, preparing him to tackle complex engineering challenges with advanced methodologies.

Professional Experience 

Asad Ali has honed his skills through various internships and research roles. He worked as a Ph.D. researcher at Jiangsu University, focusing on experimental and computational analysis of two-phase flow in electrical submersible pumps (ESP). His work involved simulating, experimenting, and visualizing the gas-liquid flow to evaluate pump performance. He also interned at the Water Management Training Institute (WMTI), Lahore, where he gained hands-on experience in water management systems and pump technology. Ali contributed significantly to organizing conferences such as the “14th Asian International Conference on Fluid Machinery” at Jiangsu University, showcasing his leadership and organizational skills. His technical expertise spans fluid mechanics, multiphase flow modeling, and pump acoustics, positioning him as a versatile engineer capable of addressing critical engineering problems.

Awards and Recognition 

Asad Ali’s contributions togi have earned him numerous accolades. He was awarded the prestigious “Best Sino-Foreign Joint Innovation Award” by Jiangsu University in 2020 for his outstanding research. Ali was also recognized with the “Best Volunteer Award” for his exceptional organizational skills during the “14th International Conference on Fluid Machinery.” In recognition of his academic excellence, Ali has been a recipient of multiple scholarships, including the Chinese Government’s “CSC Scholarship” for both his M.Sc. and Ph.D. studies. His achievements in academia were further honored with the “PEEF Merit Scholarship” from the Punjab Government of Pakistan during his undergraduate years. Ali’s work has not only been recognized locally but also internationally, as his publications in renowned journals such as Heliyon and Physics of Fluids have added significant value to the field of mechanical and fluid engineering.

Research Skills 

Asad Ali possesses strong research skills, with a deep understanding of fluid dynamics, particularly in the areas of multiphase flow and turbomachinery. His expertise includes numerical simulations, experimental testing, and the application of computational fluid dynamics (CFD) techniques to analyze and optimize the performance of mechanical systems like electrical submersible pumps (ESPs). He is proficient in using industry-standard software tools such as ANSYS, AutoCAD, and Pro-E for modeling and analysis. Ali is well-versed in noise reduction techniques, cavitation analysis, and the study of gas-liquid two-phase flow in pumps. His research also includes experimental validation of theoretical models, and he has published several high-impact papers on topics like energy performance and noise characteristics in centrifugal pumps. Ali’s research is centered on creating innovative solutions to improve efficiency and reduce noise and vibration in fluid machinery.

Publication Top Notes

1. The influence of water vapor on the internal flow characteristics within a hydrogen circulation pump
  • Authors: Ma, Q., Xia, Q., Wang, Q., Gao, G., Fall, I.
  • Publication Year: 2024
  • Citations: 1
2. CFD study of self-cleaning system of multi-stage tangential roller threshing unit for precise buckwheat breeding
  • Authors: Hussain, S., Jianjun, H., Yong, C., Ghafoor, A., Ahmed, M.
  • Publication Year: 2024
  • Citations: 1
3. Comprehensive analysis and identification of energy performance and unsteady two-phase flow patterns based on experiments and comparison between two distinct multiphase flow models
  • Authors: Ali, A., Yuan, J., Si, Q., Yolandani, Y., Fall, I.
  • Publication Year: 2024
  • Citations: 0
4. Small hydropower generation using pump as turbine; a smart solution for the development of Pakistan’s energy
  • Authors: Ali, A., Yuan, J., Javed, H., Osman, F.K., Islam, R.U.
  • Publication Year: 2023
  • Citations: 11
5. Prediction of hydrodynamic noise in ducted propeller using flow field-acoustic field coupled simulation technique based on novel vortex sound theory
  • Authors: Si, Q., Ali, A., Tian, D., Cheng, X., Yuan, J.
  • Publication Year: 2023
  • Citations: 7
6. Study on flow-induced noise propagation mechanism of cylinder-airfoil interference model by using large eddy simulation combined with vortex-acoustic equation
  • Authors: Qiaorui, S., Liu, J., Ali, A., Hong, X., Iqbal, S.
  • Publication Year: 2023
  • Citations: 3
7. Numerical and Experimental Investigation on Unsteady Flow and Hydraulic Radial Force of Low-Head Axial Flow Turbine
  • Authors: Sunsheng, Y., Ohiemi, I.E., Singh, P., Ali, A., Osman, F.
  • Publication Year: 2023
  • Citations: 2
8. Assessment of cavitation noise in a centrifugal pump using acoustic finite element method and spherical cavity radiation theory
  • Authors: Si, Q., Ali, A., Liao, M., Yuan, S., Bois, G.
  • Publication Year: 2023
  • Citations: 16
9. Intelligent Identification of Cavitation State of Centrifugal Pump Based on Support Vector Machine
  • Authors: He, X., Song, Y., Wu, K., Shen, C., Si, Q.
  • Publication Year: 2022
  • Citations: 1
10. Investigation of energy performance, internal flow and noise characteristics of miniature drainage pump under water–air multiphase flow: design and part load conditions
  • Authors: Ali, A., Si, Q., Yuan, J., Awais, M., Aslam, B.
  • Publication Year: 2022
  • Citations: 11